On small sumsets in abelian groups

被引:0
作者
Lev, VF [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
sumsets; small doubling;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the structure of those pairs of finite subsets of an abelian group whose sums have relatively few elements: \A + B\ < \A\ + \B\. In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated description of recursive nature. Using intermediate results of Kemperman, we obtain below a description of another type. Though not (generally speaking) sufficient, our description is intuitive and transparent and can be easily used in applications.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
  • [31] SMALL SUMSETS IN R: FULL CONTINUOUS 3k - 4 THEOREM, CRITICAL SETS
    de Roton, Anne
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 177 - 196
  • [32] The cardinality of sumsets: different summands
    Murphy, Brendan
    Palsson, Eyvindur Ari
    Petridis, Giorgis
    ACTA ARITHMETICA, 2015, 167 (04) : 375 - 395
  • [33] Sumsets avoiding squarefree integers
    Schlage-Puchta, Jan-Christoph
    ACTA ARITHMETICA, 2010, 143 (01) : 51 - 57
  • [34] SMALL DOUBLING IN m-ENGEL GROUPS
    Longobardi, Patrizia
    Maj, Mercede
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (04) : 277 - 291
  • [35] Quantitative stability for sumsets in Rn
    Figalli, Alessio
    Jerison, David
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (05) : 1079 - 1106
  • [36] A note on sumsets of subgroups in Zp*
    Hart, Derrick
    ACTA ARITHMETICA, 2013, 161 (04) : 387 - 395
  • [37] SUMSETS CONTAINING A TERM OF A SEQUENCE
    Chen, Min
    Tang, Min
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 420 - 428
  • [38] On infinite arithmetic progressions in sumsets
    Chen, Yong-Gao
    Yang, Quan-Hui
    Zhao, Lilu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2669 - 2682
  • [39] Critical pairs in abelian groups and Kemperman's structure theorem
    Lev, Vsevolod F.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (03) : 379 - 396
  • [40] Sumsets with restricted number of prime factors
    Bing-Ling Wu
    Lithuanian Mathematical Journal, 2019, 59 : 251 - 260