On small sumsets in abelian groups

被引:0
作者
Lev, VF [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
关键词
sumsets; small doubling;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the structure of those pairs of finite subsets of an abelian group whose sums have relatively few elements: \A + B\ < \A\ + \B\. In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated description of recursive nature. Using intermediate results of Kemperman, we obtain below a description of another type. Though not (generally speaking) sufficient, our description is intuitive and transparent and can be easily used in applications.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
  • [21] THE STRUCTURE OF HIGHER SUMSETS
    Lev, Vsevolod F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (12) : 5165 - 5177
  • [22] On the Schnirelmann density of sumsets
    Hegedüs, P
    Piroska, G
    Ruzsa, IZ
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 333 - 345
  • [23] On Sumsets and Convex Hull
    Károly J. Böröczky
    Francisco Santos
    Oriol Serra
    Discrete & Computational Geometry, 2014, 52 : 705 - 729
  • [24] Sumsets and entropy revisited
    Green, Ben
    Manners, Freddie
    Tao, Terence
    RANDOM STRUCTURES & ALGORITHMS, 2025, 66 (01)
  • [25] Sumsets in quadratic residues
    Shkredov, I. D.
    ACTA ARITHMETICA, 2014, 164 (03) : 221 - 243
  • [26] Minimal additive complements in finitely generated abelian groups
    Arindam Biswas
    Jyoti Prakash Saha
    The Ramanujan Journal, 2022, 57 : 215 - 238
  • [27] Minimal additive complements in finitely generated abelian groups
    Biswas, Arindam
    Saha, Jyoti Prakash
    RAMANUJAN JOURNAL, 2022, 57 (01) : 215 - 238
  • [28] SOME INVERSE RESULTS OF SUMSETS
    Tang, Min
    Xing, Yun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 305 - 313
  • [29] Distribution of Missing Sums in Sumsets
    Lazarev, Oleg
    Miller, Steven J.
    O'Bryant, Kevin
    EXPERIMENTAL MATHEMATICS, 2013, 22 (02) : 132 - 156
  • [30] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China Mathematics, 2023, 66 : 2669 - 2682