The contact geometry of the spatial circular restricted 3-body problem

被引:3
作者
Cho, WanKi [1 ]
Jung, Hyojin [1 ]
Kim, GeonWoo [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2020年 / 90卷 / 02期
基金
新加坡国家研究基金会;
关键词
Spatial circular restricted 3-body problem; Contact geometry; Celestial mechanics;
D O I
10.1007/s12188-020-00222-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a hypersurface of the regularized, spatial circular restricted three-body problem is of contact type whenever the energy level is below the first critical value (the energy level of the first Lagrange point) or if the energy level is slightly above it. A dynamical consequence is that there is no blue sky catastrophe in this energy range.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 11 条
[1]  
Abraham R., 1978, Foundations of mechanics, V2
[2]   Contact geometry of the restricted three-body problem [J].
Albers, Peter ;
Frauenfelder, Urs ;
Van Koert, Otto ;
Paternain, Gabriel P. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (02) :229-263
[3]  
[Anonymous], 2018, RESTRICTED 3 BODY PR
[4]  
Arnold V I., 1994, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory
[5]  
Belbruno L., ARXIV181109213
[6]   LOW ENERGY TRANSIT ORBITS IN RESTRICTED 3-BODY PROBLEM [J].
CONLEY, CC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) :732-&
[7]   MORSE-THEORY FOR LAGRANGIAN INTERSECTIONS [J].
FLOER, A .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 28 (03) :513-547
[8]   The dynamics on three-dimensional strictly convex energy surfaces [J].
Hofer, H ;
Wysocki, K ;
Zehnder, E .
ANNALS OF MATHEMATICS, 1998, 148 (01) :197-289
[9]   PSEUDOHOLOMORPHIC CURVES IN SYMPLECTIZATIONS WITH APPLICATIONS TO THE WEINSTEIN CONJECTURE IN DIMENSION 3 [J].
HOFER, H .
INVENTIONES MATHEMATICAE, 1993, 114 (03) :515-563
[10]   ON THE EXISTENCE OF DISK-LIKE GLOBAL SECTIONS FOR REEB FLOWS ON THE TIGHT 3-SPHERE [J].
Hryniewicz, Umberto ;
Salomao, Pedro A. S. .
DUKE MATHEMATICAL JOURNAL, 2011, 160 (03) :415-465