Fields of moduli and definition of hyperelliptic covers

被引:9
作者
Fuertes, Y. [1 ]
Gonzalez-Diez, G. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
.;
D O I
10.1007/s00013-005-1433-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for all genera g > 1, g equivalent to 1 mod 4, we construct an explicit hyperelliptic curve whose field of moduli is Q and such that the minimum subfield of R over which it can be hyperelliptically defined is a degree three extension of Q. These examples are related to previous work by Earle, Shimura, and Mestre and to a recent conjecture by Shaska.
引用
收藏
页码:398 / 408
页数:11
相关论文
共 16 条
[2]  
EARLE CJ, 1971, ANN MATH STUD, V66
[3]  
Farkas H. M., 1980, RIEMANN SURFACES, DOI [10.1007/978-1-4612-2034-3, DOI 10.1007/978-1-4612-2034-3]
[4]  
FUERTES Y, UNPUB SMOOTH NORMAL
[5]  
FUERTES Y, 1993, PUBL MAT, V37, P339
[6]  
GONZALEZDIEZ G, 1992, LOND MATH S, V173, P75, DOI 10.1017/CBO9780511565793.010
[7]  
GONZALEZDIEZ G, 1991, P LOND MATH SOC, V62, P469, DOI [DOI 10.1112/PLMS/S3-62.3.469, 10.1112/plms/s3-62.3]
[8]  
GONZALEZDIEZ G, UNPUB VARIATIONS BEL
[9]  
HORIUCHI R, 1979, J MATH KYOTO U, V19
[10]  
Hungerford T.W., 1974, Algebra