Review of radiation damage in GaN-based materials and devices

被引:196
作者
Pearton, Stephen J. [1 ]
Deist, Richard [1 ]
Ren, Fan [2 ]
Liu, Lu [2 ]
Polyakov, Alexander Y. [3 ]
Kim, Jihyun [4 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32606 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Inst Rare Met, Moscow 119017, Russia
[4] Korea Univ, Dept Chem & Biol Engn, Seoul 136713, South Korea
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2013年 / 31卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
N-TYPE GAN; ELECTRON-MOBILITY TRANSISTORS; IRRADIATION-INDUCED DEFECTS; NEUTRON-IRRADIATION; PROTON-IRRADIATION; OPTICAL-PROPERTIES; SCHOTTKY-BARRIER; DEEP-LEVEL; ALGAN/GAN HETEROSTRUCTURES; LUMINESCENT PROPERTIES;
D O I
10.1116/1.4799504
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A review of the effects of proton, neutron, gamma-ray, and electron irradiation on GaN materials and devices is presented. Neutron irradiation tends to create disordered regions in the GaN, while the damage from the other forms of radiation is more typically point defects. In all cases, the damaged region contains carrier traps that reduce the mobility and conductivity of the GaN and at high enough doses, a significant degradation of device performance. GaN is several orders of magnitude more resistant to radiation damage than GaAs of similar doping concentrations. In terms of heterostructures, preliminary data suggests that the radiation hardness decreases in the order AlN/GaN > AlGaN/GaN > InAlN/GaN, consistent with the average bond strengths in the Al-based materials. (C) 2013 American Vacuum Society.
引用
收藏
页数:16
相关论文
共 148 条
[1]   Stopping cross sections for 0.3-2.5 MeV protons in GaN and InP [J].
Ahlgren, T ;
Rauhala, E .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) :4871-4873
[2]   60Co gamma radiation effects on DC, RF, and pulsed I-V characteristics of AlGaN/GaN HEMTs [J].
Aktas, O ;
Kuliev, A ;
Kumar, V ;
Schwindt, R ;
Toshkov, S ;
Costescu, D ;
Stubbins, J ;
Adesida, I .
SOLID-STATE ELECTRONICS, 2004, 48 (03) :471-475
[3]   Effect of proton irradiation on interface state density in Sc2O3/GaN and Sc2O3/MgO/GaN diodes [J].
Allums, K. K. ;
Hlad, M. ;
Gerger, A. P. ;
Gila, B. P. ;
Abernathy, C. R. ;
Pearton, S. J. ;
Ren, F. ;
Dwivedi, R. ;
Fogarty, T. N. ;
Wilkins, R. .
JOURNAL OF ELECTRONIC MATERIALS, 2007, 36 (04) :519-523
[4]   Proton bombardment-induced electron traps in epitaxially grown n-GaN [J].
Auret, FD ;
Goodman, SA ;
Koschnick, FK ;
Spaeth, JM ;
Beaumont, B ;
Gibart, P .
APPLIED PHYSICS LETTERS, 1999, 74 (03) :407-409
[5]   Electrical characterization of two deep electron traps introduced in epitaxially grown n-GaN during He-ion irradiation [J].
Auret, FD ;
Goodman, SA ;
Koschnick, FK ;
Spaeth, JM ;
Beaumont, B ;
Gibart, P .
APPLIED PHYSICS LETTERS, 1998, 73 (25) :3745-3747
[6]   Electron traps created in n-type GaN during 25 keV hydrogen implantation [J].
Auret, FD ;
Meyer, WE ;
Goodman, SA ;
Hayes, M ;
Legodi, MJ ;
Beaumont, B ;
Gibart, P .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 93 (1-3) :6-9
[7]   Physical model for the low-dose-rate effect in bipolar devices [J].
Boch, J. ;
Saigne, F. ;
Schrimpf, R. D. ;
Vaille, J. -R. ;
Dusseau, L. ;
Lorfevre, E. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (06) :3655-3660
[8]   NATIVE DEFECTS IN GALLIUM NITRIDE [J].
BOGUSLAWSKI, P ;
BRIGGS, EL ;
BERNHOLC, J .
PHYSICAL REVIEW B, 1995, 51 (23) :17255-17258
[9]   Photoluminescence of GaN: Effect of electron irradiation [J].
Buyanova, IA ;
Wagner, M ;
Chen, WM ;
Monemar, B ;
Lindstrom, JL ;
Amano, H ;
Akasaki, I .
APPLIED PHYSICS LETTERS, 1998, 73 (20) :2968-2970
[10]   Annealing behavior of a proton irradiated AlxGa1-xN/GaN high electron mobility transistor grown by MBE [J].
Cai, SJ ;
Tang, YS ;
Li, R ;
Wei, YY ;
Wong, L ;
Chen, YL ;
Wang, KL ;
Chen, M ;
Zhao, YF ;
Schrimpf, RD ;
Keay, JC ;
Galloway, KF .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (02) :304-307