QUALITATIVE ANALYSIS OF A PREY-PREDATOR MODEL WITH STAGE STRUCTURE FOR THE PREDATOR

被引:41
作者
Du, Yihong [1 ,2 ]
Pang, Peter Y. H. [3 ]
Wang, Mingxin [4 ,5 ]
机构
[1] Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
[2] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
[3] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[4] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[5] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
predator-prey model; stage structure; stability; cross diffusion; Turing pattern;
D O I
10.1137/070684173
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a diffusive prey-predator model with stage structure for the predator. We first analyze the stability of the nonnegative steady states for the reduced ODE system and then study the same question for the corresponding reaction-diffusion system with homogeneous Neumann boundary conditions. We find that a Hopf bifurcation occurs in the ODE system, but no Turing pattern happens in the reaction-diffusion system. However, when a natural cross diffusion term is included in the model, we can prove the emergence of stationary patterns (i.e., nonconstant positive stationary solutions) for this system; moreover, these stationary patterns do not exist in the considered parameter regime when there is no cross diffusion.
引用
收藏
页码:596 / 620
页数:25
相关论文
共 46 条
[1]  
Amann H., 1990, Differ. Integr. Equations, V3, P13, DOI [10.57262/die/1371586185, DOI 10.57262/DIE/1371586185]
[2]  
[Anonymous], 1980, LECT NOTES BIOMATHEM
[3]   Multiparametric bifurcation analysis of a basic two-stage population model [J].
Baer, S. M. ;
Kooi, B. W. ;
Kuznetsov, Yu. A. ;
Thieme, H. R. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1339-1365
[4]  
Capasso V., 1999, LECT NOTES MATH, V1714
[5]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[6]   Effect of cross-diffusion on pattern formation - A nonlinear analysis [J].
Chattopadhyay, J ;
Tapaswi, PK .
ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (01) :1-12
[7]   Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model [J].
Chen, WY ;
Peng, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (02) :550-564
[8]  
CHEN XF, 2005, DISCRETE CONTIN DY S, P173
[9]   A strongly coupled predator-prey system with non-monotonic functional response [J].
Chen, Xinfu ;
Qi, Yuanwei ;
Wang, Mingxin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) :1966-1979
[10]   Predator-prey interactions with delays due to juvenile maturation [J].
Cooke, KL ;
Elderkin, RH ;
Huang, WZ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (03) :1050-1079