Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations

被引:27
作者
Zeng, Wei [1 ,2 ]
Xiao, Aiguo [1 ,2 ]
Li, Xueyang [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional fractional; Ginzburg-Landau equation; Fourier pseudo-spectral method; Discrete mass and energy inequalities; Error estimate; DIFFERENCE SCHEME; DYNAMICS;
D O I
10.1016/j.aml.2019.01.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex space fractional Ginzburg-Landau equations. The continuous mass and energy inequalities as well as their discrete versions are presented. Moreover, by the discrete mass and energy inequalities, the error estimate of the Fourier pseudo-spectral scheme is established, and the scheme is proved to have the spectral accuracy. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:40 / 45
页数:6
相关论文
共 16 条
  • [1] CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
  • [2] A linearized high-order difference scheme for the fractional Ginzburg-Landau equation
    Hao, Zhao-peng
    Sun, Zhi-zhong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 105 - 124
  • [3] An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation
    He, Dongdong
    Pan, Kejia
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (03) : 899 - 925
  • [4] STABILITY OF THE FOURIER METHOD
    KREISS, HO
    OLIGER, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) : 421 - 433
  • [5] Galerkin finite element method for the nonlinear fractional Ginzburg-Landau equation
    Li, Meng
    Huang, Chengming
    Wang, Nan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2017, 118 : 131 - 149
  • [6] FOURIER SPECTRAL APPROXIMATIONS TO THE DYNAMICS OF 3D FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION
    Lu, Hong
    Lu, Shujuan
    Zhang, Mingji
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2539 - 2564
  • [7] Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation
    Mohebbi, Akbar
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02):
  • [8] Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation
    Mvogo, Alain
    Tambue, Antoine
    Ben-Bolie, Germain H.
    Kofane, Timoleon C.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 396 - 410
  • [9] Oldham KB, 2006, FRACTIONAL CALCULUS
  • [10] Well-posedness and dynamics for the fractional Ginzburg-Landau equation
    Pu, Xueke
    Guo, Boling
    [J]. APPLICABLE ANALYSIS, 2013, 92 (02) : 318 - 334