Robustness of adiabatic quantum computation

被引:349
作者
Childs, AM [1 ]
Farhi, E
Preskill, J
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 01期
关键词
Algorithms - Combinatorial mathematics - Computational methods - Computer simulation - Error analysis - Fault tolerant computer systems - Hamiltonians - Perturbation techniques - Problem solving;
D O I
10.1103/PhysRevA.65.012322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the fault tolerance of quantum computation by adiabatic evolution, a quantum algorithm for solving various combinatorial search problems. We describe an inherent robustness of adiabatic computation against two kinds of errors, unitary control errors and decoherence, and we study this robustness using numerical simulations of the algorithm.
引用
收藏
页码:123221 / 1232210
页数:10
相关论文
共 23 条
[1]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[2]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[3]  
CHILDS AM, QUANTPH0012104
[4]   OPEN QUANTUM SYSTEMS WITH TIME-DEPENDENT HAMILTONIANS AND THEIR LINEAR RESPONSE [J].
DAVIES, EB ;
SPOHN, H .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (05) :511-523
[5]   MARKOVIAN MASTER EQUATIONS [J].
DAVIES, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 39 (02) :91-110
[6]   PROPER FORM OF THE GENERATOR IN THE WEAK COUPLING LIMIT [J].
DUMCKE, R ;
SPOHN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 34 (04) :419-422
[7]  
EKERT A, QUANTPH0004015
[8]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[9]  
FARHI E, QUANTPH0001106
[10]  
FARHI E, QUANTPH0007071