Formation of III-V-on-insulator structures on Si by direct wafer bonding

被引:47
作者
Yokoyama, Masafumi [1 ]
Iida, Ryo [1 ]
Ikku, Yuki [1 ]
Kim, Sanghyeon [1 ]
Takagi, Hideki [2 ]
Yasuda, Tetsuji [2 ]
Yamada, Hisashi [3 ]
Ichikawa, Osamu [3 ]
Fukuhara, Noboru [3 ]
Hata, Masahiko [3 ]
Takenaka, Mitsuru [1 ]
Takagi, Shinichi [1 ]
机构
[1] Univ Tokyo, Dept Elect Engn & Informat Syst EEIS, Grad Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[3] Sumitomo Chem Co Ltd, Tsukuba, Ibaraki 3003294, Japan
关键词
TEMPERATURE; SILICON; TRANSISTOR; VOLTAGE; INGAAS; CMOS;
D O I
10.1088/0268-1242/28/9/094009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have studied the formation of III-V-compound-semiconductors-on-insulator (III-V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III-V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O-2 plasma-assisted DWB process with ECR sputtered SiO2 BOX layers and a DWB process based on atomic-layer-deposition Al2O3 (ALD-Al2O3) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO2 and ALD-Al2O3 BOX layers are desorption of Ar and H2O gas, respectively. In order to suppress micro-void generation in the ECR-SiO2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al2O3 BOX layers to increase the deposition temperature of the ALD-Al2O3 BOX layers. It is also another possible solution to deposit ALD-Al2O3 BOX layers on thermally oxidized SiO2 layers, which can absorb the desorption gas from ALD-Al2O3 BOX layers.
引用
收藏
页数:10
相关论文
共 33 条
[1]  
[Anonymous], S VLSI TECHN IEEE
[2]  
Chung TR, 1997, APPL SURF SCI, V117, P808, DOI 10.1016/S0169-4332(97)80187-0
[3]  
Hill R. J. W., 2010, INT EL DEVICES MEET, P130
[4]   THERMAL-DESORPTION AND INFRARED STUDIES OF PLASMA-ENHANCED CHEMICAL VAPOR-DEPOSITED SIO FILMS WITH TETRAETHYLORTHOSILICATE [J].
HIRASHITA, N ;
TOKITOH, S ;
UCHIDA, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (04) :1787-1793
[5]   Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (≤ 2 gm) composite buffer architecture for high-speed and low-voltage (0.5V) logic applications [J].
Hudait, M. K. ;
Dewey, G. ;
Datta, S. ;
Fastenau, J. M. ;
Kavalieros, J. ;
Liu, W. K. ;
Lubyshev, D. ;
Pillarisetty, R. ;
Rachmady, W. ;
Radosavljevic, M. ;
Rakshit, T. ;
Chau, Robert .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :625-+
[6]   CARBON DOPING OF INGAAS IN SOLID-SOURCE MOLECULAR-BEAM EPITAXY USING CARBON TETRABROMIDE [J].
HWANG, WY ;
MILLER, DL ;
CHEN, YK ;
HUMPHREY, DA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (02) :1193-1196
[7]   Low-driving-current InGaAsP photonic-wire optical switches using III-V CMOS photonics platform [J].
Ikku, Yuki ;
Yokoyama, Masafumi ;
Ichikawa, Osamu ;
Hata, Masahiko ;
Takenaka, Mitsuru ;
Takagi, Shinichi .
OPTICS EXPRESS, 2012, 20 (26) :B357-B364
[8]   High Electron Mobility Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channels [J].
Ishii, Hiroyuki ;
Miyata, Noriyuki ;
Urabe, Yuji ;
Itatani, Taro ;
Yasuda, Tetsuji ;
Yamada, Hisashi ;
Fukuhara, Noboru ;
Hata, Masahiko ;
Deura, Momoko ;
Sugiyama, Masakazu ;
Takenaka, Mitsuru ;
Takagi, Shinichi .
APPLIED PHYSICS EXPRESS, 2009, 2 (12)
[9]  
KAKIMOTO K, 1982, APPL PHYS LETT, V40, P826, DOI 10.1063/1.93281
[10]  
Kim S., 2011, APPL PHYS EXPRESS, V5