Central and Peripheral Regulation of Food Intake and Physical Activity: Pathways and Genes

被引:248
作者
Lenard, Natalie R. [1 ]
Berthoud, Hans-Rudolf [1 ]
机构
[1] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Neurobiol Nutr Lab, Baton Rouge, LA USA
关键词
D O I
10.1038/oby.2008.511
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A changing environment and lifestyle on the background of evolutionary engraved and perinatally imprinted physiological response patterns is the foremost explanation for the current obesity epidemic. However, it is not clear what the mechanisms are by which the modern environment overrides the physiological controls of appetite and homeostatic body-weight regulation. Food intake and energy expenditure are controlled by complex, redundant, and distributed neural systems involving thousands of genes and reflecting the fundamental biological importance of adequate nutrient supply and energy balance. There has been much progress in identifying the important role of hypothalamus and caudal brainstem in the various hormonal and neural mechanisms by which the brain informs itself about availability of ingested and stored nutrients and, in turn, generates behavioral, autonomic, and endocrine output. Some of the genes involved in this "homeostatic" regulator are crucial for energy balance as manifested in the well-known monogenic obesity models. However, it can be clearly demonstrated that much larger portions of the nervous system of animals and humans, including the cortex, basal ganglia, and the limbic system, are concerned with the procurement of food as a basic and evolutionarily conserved survival mechanism to defend the lower limits of adiposity. By forming representations and reward expectancies through processes of learning and memory, these systems evolved to engage powerful emotions for guaranteed supply with, and ingestion of, beneficial foods from a sparse and often hostile environment. They are now simply overwhelmed with an abundance of food and food cues no longer contested by predators and interrupted by famines. The anatomy, chemistry, and functions of these elaborate neural systems and their interactions with the "homeostatic" regulator in the hypothalamus are poorly understood, and many of the genes involved are either unknown or not well characterized. This is regrettable because these systems are directly and primarily involved in the interactions of the modern environment and lifestyle with the human body. They are no less "physiological" than metabolic-regulatory mechanisms that have attracted most of the research during the past 15 years.
引用
收藏
页码:S11 / S22
页数:12
相关论文
共 168 条
[1]   Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite [J].
Abizaid, Alfonso ;
Liu, Zhong-Wu ;
Andrews, Zane B. ;
Shanabrough, Marya ;
Borok, Erzsebet ;
Elsworth, John D. ;
Roth, Robert H. ;
Sleeman, Mark W. ;
Picciotto, Marina R. ;
Tschop, Matthias H. ;
Gao, Xiao-Bing ;
Horvath, Tamas L. .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (12) :3229-3239
[2]   Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats [J].
Adage, T ;
Scheurink, AJW ;
de Boer, SF ;
de Vries, K ;
Konsman, JP ;
Kuipers, F ;
Adan, RAH ;
Baskin, DG ;
Schwartz, MW ;
van Dijk, G .
JOURNAL OF NEUROSCIENCE, 2001, 21 (10) :3639-3645
[3]   A novel family of mammalian taste receptors [J].
Adler, E ;
Hoon, MA ;
Mueller, KL ;
Chandrashekar, J ;
Ryba, NJP ;
Zuker, CS .
CELL, 2000, 100 (06) :693-702
[4]   The right brain hypothesis for obesity [J].
Alonso-Alonso, Miguel ;
Pascual-Leone, Alvaro .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (16) :1819-1822
[5]  
Anderson JW, 2001, AM J CLIN NUTR, V74, P579
[6]   AMP-activated protein kinase plays a role in the control of food intake [J].
Andersson, U ;
Filipsson, K ;
Abbott, CR ;
Woods, A ;
Smith, K ;
Bloom, SR ;
Carling, D ;
Small, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12005-12008
[7]   Muscarinic receptors control postprandial release of glucagon-like peptide-1:: In vivo and in vitro studies in rats [J].
Anini, Y ;
Hansotia, T ;
Brubaker, PL .
ENDOCRINOLOGY, 2002, 143 (06) :2420-2426
[8]   Orexin A effects on the olfactory bulb spontaneous activity and odor responsiveness in freely breathing rats [J].
Apelbaum, AF ;
Perrut, A ;
Chaput, M .
REGULATORY PEPTIDES, 2005, 129 (1-3) :49-61
[9]   Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected Ghrelin in the rat [J].
Arnold, Myrtha ;
Mura, Anna ;
Langhans, Wolfgang ;
Geary, Nori .
JOURNAL OF NEUROSCIENCE, 2006, 26 (43) :11052-11060
[10]   Taste receptor genes [J].
Bachmanov, Alexander A. ;
Beauchamp, Gary K. .
ANNUAL REVIEW OF NUTRITION, 2007, 27 :389-414