Facial Nonrepetitive Vertex Coloring of Plane Graphs

被引:11
作者
Barat, Janos [1 ,2 ]
Czap, Julius [3 ]
机构
[1] Technol Univ Pannonia, Dept Comp Sci & Syst, H-8200 Veszprem, Hungary
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] Tech Univ Kosice, Fac Econ, Dept Appl Math & Business Informat, SK-04001 Kosice, Slovakia
基金
澳大利亚研究理事会;
关键词
nonrepetitive; colouring; plane graph; Thue sequences;
D O I
10.1002/jgt.21695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence s1,s2,,sk,s1,s2,,sk is a repetition. A sequence S is nonrepetitive, if no subsequence of consecutive terms of S is a repetition. Let G be a plane graph. That is, a planar graph with a fixed embedding in the plane. A facial path consists of consecutive vertices on the boundary of a face. A facial nonrepetitive vertex coloring of a plane graph G is a vertex coloring such that the colors assigned to the vertices of any facial path form a nonrepetitive sequence. Let f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of G. Harant and Jendrol' conjectured that f(G) can be bounded from above by a constant. We prove that f(G)24 for any plane graph G.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 14 条
  • [1] Nonrepetitive colorings of graphs
    Alon, N
    Grytczuk, J
    Haluszcak, M
    Riordan, O
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (3-4) : 336 - 346
  • [2] Barat J., 2011, ARXIV11051023V1
  • [3] On square-free vertex colorings of graphs
    Barat, Janos
    Varju, Peter P.
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (03) : 411 - 422
  • [4] Nonrepetitive colorings of trees
    Bresar, B.
    Grytczuk, J.
    Klavzar, S.
    Niwczyk, S.
    Peterin, I.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (02) : 163 - 172
  • [5] Currie J.D., 2002, ELECT J COMBIN, V9
  • [6] Dujmovic V., PREPRINT
  • [7] Pattern avoidance on graphs
    Grytczuk, Jaroslaw
    [J]. DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1341 - 1346
  • [8] Nonrepetitive vertex colorings of graphs
    Harant, Jochen
    Jendrol', Stanislav
    [J]. DISCRETE MATHEMATICS, 2012, 312 (02) : 374 - 380
  • [9] Facial Non-Repetitive Edge-Coloring of Plane Graphs
    Havet, Frederic
    Jendrol, Stanislav
    Sotak, Roman
    Skrabul'akova, Erika
    [J]. JOURNAL OF GRAPH THEORY, 2011, 66 (01) : 38 - 48
  • [10] Nonrepetitive colorings of graphs of bounded tree-width
    Kuendgen, Andre
    Pelsmajer, Michael J.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (19) : 4473 - 4478