Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors

被引:63
作者
Rodrigues, Claudio G. [1 ]
Machado, Dijanah C. [1 ]
Chevtchenko, Sergio F. [1 ]
Krasilnikov, Oleg V. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Biophys & Radiobiol, BR-50670901 Recife, PE, Brazil
关键词
D O I
10.1529/biophysj.108.140814
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The mechanisms of KCl-induced enhancement in identification of individual molecules of poly(ethylene glycol) using solitary alpha-hemolysin nanoscale pores are described. The interaction of single molecules with the nanopore causes changes in the ionic current flowing through the pore. We show that the on-rate constant of the process is several hundred times larger and that the off-rate is several hundred times smaller in 4 M KCl than in 1 M KCl. These shifts dramatically improve detection and make single molecule identification feasible. KCl also changes the solubility of poly(ethylene glycol) by the same order of magnitude as it changes the rate constants. In addition, the polymer-nanopore interaction is determined to be a strong non-monotonic function of voltage, indicating that the flexible, nonionic poly(ethylene glycol) acts as a charged molecule. Therefore, salting-out and Coulombic interactions are responsible for the KCl-induced enhancement. These results will advance the development of devices with sensor elements based on single nanopores.
引用
收藏
页码:5186 / 5192
页数:7
相关论文
共 53 条
[1]   Recognizing a single base in an individual DNA strand:: A step toward DNA sequencing in nanopores [J].
Ashkenasy, N ;
Sánchez-Quesada, J ;
Bayley, H ;
Ghadiri, MR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (09) :1401-1404
[2]  
Bayley H, 2000, ADV MATER, V12, P139, DOI 10.1002/(SICI)1521-4095(200001)12:2<139::AID-ADMA139>3.3.CO
[3]  
2-H
[4]   Translocation of rodlike polymers through membrane channels [J].
Berezhkovskii, AM ;
Gopich, IV .
BIOPHYSICAL JOURNAL, 2003, 84 (02) :787-793
[5]   Ion channels as molecular Coulter counters to probe metabolite transport [J].
Bezrukov, SM .
JOURNAL OF MEMBRANE BIOLOGY, 2000, 174 (01) :1-13
[6]   CURRENT NOISE REVEALS PROTONATION KINETICS AND NUMBER OF IONIZABLE SITES IN AN OPEN PROTEIN ION CHANNEL [J].
BEZRUKOV, SM ;
KASIANOWICZ, JJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2352-2355
[7]   Field-dependent effect of crown ether (18-crown-6) on ionic conductance of α-hemolysin channels [J].
Bezrukov, SM ;
Krasilnikov, OV ;
Yuldasheva, LN ;
Berezhkovskii, AM ;
Rodrigues, CG .
BIOPHYSICAL JOURNAL, 2004, 87 (05) :3162-3171
[8]   COUNTING POLYMERS MOVING THROUGH A SINGLE-ION CHANNEL [J].
BEZRUKOV, SM ;
VODYANOY, I ;
PARSEGIAN, VA .
NATURE, 1994, 370 (6487) :279-281
[9]   Dynamics and free energy of polymers partitioning into a nanoscale pore [J].
Bezrukov, SM ;
Vodyanoy, I ;
Brutyan, RA ;
Kasianowicz, JJ .
MACROMOLECULES, 1996, 29 (26) :8517-8522
[10]   Designed protein pores as components for biosensors [J].
Braha, O ;
Walker, B ;
Cheley, S ;
Kasianowicz, JJ ;
Song, LZ ;
Gouaux, JE ;
Bayley, H .
CHEMISTRY & BIOLOGY, 1997, 4 (07) :497-505