Advanced Thomson scattering system for high-flux linear plasma generator

被引:65
作者
van der Meiden, H. J. [1 ]
Lof, A. R. [1 ]
van den Berg, M. A. [1 ]
Brons, S. [1 ]
Donne, A. J. H. [1 ,2 ]
van Eck, H. J. N. [1 ]
Koelman, P. M. J. [1 ]
Koppers, W. R. [1 ]
Kruijt, O. G. [1 ]
Naumenko, N. N. [3 ]
Oyevaar, T. [1 ]
Prins, P. R. [1 ]
Rapp, J. [1 ]
Scholten, J. [1 ]
Schram, D. C. [1 ,2 ]
Smeets, P. H. M. [1 ]
van der Star, G. [1 ]
Tugarinov, S. N. [4 ]
van Emmichoven, P. A. Zeijlmans [1 ]
机构
[1] EURATOM, FOM Inst DIFFER, Dutch Inst Fundamental Energy Res, NL-3430 BE Nieuwegein, Netherlands
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[3] IPh NASB, Minsk, BELARUS
[4] SRC TRINITI, Troitsk, Moscow Reg, Russia
关键词
RECOMBINATION; ARGON;
D O I
10.1063/1.4768527
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f/3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n(e)) and temperature (T-e) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in ne and 6% in T-e (at n(e) = 9.4 x 10(18) m(-3)) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n(e) > 2.8 x 10(20) m(-3). The minimum measurable density and temperature are ne < 1 x 10(17) m(-3) and T-e < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n(0)) of the plasma can be measured with an accuracy of 25% (at n(0) = 1 x 10(20) m(-3)). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768527]
引用
收藏
页数:12
相关论文
共 25 条
[1]  
Ashkenas H, 1966, RAREFIED GAS DYNAMIC, V2
[2]   Exploiting a transmission grating spectrometer [J].
Bell, RE .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) :4158-4161
[3]   Simulations of geometrically pinched argon plasmas using an extended one-dimensional model [J].
Burm, KTAL ;
Goedheer, WJ ;
Schram, DC .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (13) :2000-2015
[4]   Production of high transient heat and particle fluxes in a linear plasma device [J].
De Temmerman, G. ;
Zielinski, J. J. ;
van der Meiden, H. ;
Melissen, W. ;
Rapp, J. .
APPLIED PHYSICS LETTERS, 2010, 97 (08)
[5]   ANOMALOUS FAST RECOMBINATION IN HYDROGEN PLASMAS INVOLVING ROVIBRATIONAL EXCITATION [J].
DEGRAAF, MJ ;
SEVERENS, R ;
DAHIYA, RP ;
VANDESANDEN, MCM ;
SCHRAM, DC .
PHYSICAL REVIEW E, 1993, 48 (03) :2098-2102
[6]   Plasma expansion: fundamentals and applications [J].
Engeln, R ;
Mazouffre, S ;
Vankan, P ;
Bakker, I ;
Schram, DC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2002, 11 (3A) :A100-A104
[7]   LASER LIGHT SCATTERING IN LABORATORY PLASMAS [J].
EVANS, DE ;
KATZENSTEIN, J .
REPORTS ON PROGRESS IN PHYSICS, 1969, 32 (02) :207-+
[8]   Two-dimensional flow characteristic of a hot expanding plasma [J].
Gabriel, O. ;
Colsters, P. G. J. ;
Schram, D. C. ;
Engeln, R. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (01)
[9]   Planetary-entry gas dynamics [J].
Gnoffo, PA .
ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 :459-494
[10]  
JANSSEN GM, 2000, THESIS U EINDHOVEN N