Nonoscillatory half-linear differential equations and generalized Karamata functions

被引:49
作者
Jaros, J
Takasi, K
Tanigawa, T
机构
[1] Fukuoka Univ, Fac Sci, Dept Appl Math, Jonan Ku, Fukuoka 8140180, Japan
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal, Bratislava 82448, Slovakia
[3] Joetsu Univ Educ, Dept Math, Niigata 9438512, Japan
关键词
half-linear differential equation; nonoscillation; slowly varying function; regular variation;
D O I
10.1016/j.na.2005.05.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a natural generalization of the concept of regularly varying functions in the sense of Karamata, and show that the class of generalized Karamata functions is a well-suited framework for the study of the asymptotic behavior of nonoscillatory solutions of the half-linear differential equation of the type (P(t) vertical bar y'vertical bar(alpha-1)y')' + q(t) vertical bar y vertical bar(alpha-1) y = 0. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:762 / 787
页数:26
相关论文
共 9 条
[1]  
[Anonymous], 2000, LECT NOTES MATH
[2]  
Bingham N. H., 1989, Encyclopedia of Mathematics and Its Applications, V27
[3]  
Elbert A., 1979, C MATH SOC J BOLYAI, V30, P153, DOI [10.1007/BF01951012, DOI 10.1007/BF01951012]
[4]  
HOWARD HC, 1997, B T 114 ACAD S SMNSM, V22, P85
[5]  
Jaros J, 2004, SERB AC B, P25
[6]  
Jaros J., 2002, PUBL I MATH-BEOGRAD, V72, P113
[7]  
Jaros J., 2003, Results Math., V43, P129
[8]   Oscillation and nonoscillation criteria for second order quasilinear differential equations [J].
Kusano, T ;
Naito, Y .
ACTA MATHEMATICA HUNGARICA, 1997, 76 (1-2) :81-99
[9]  
Kusano T., 1994, Differential Equations Dynam. Systems, V2, P1