Experimental Observation of Equilibrium and Dynamical Quantum Phase Transitions via Out-of-Time-Ordered Correlators

被引:109
作者
Nie, Xinfang [1 ,2 ,3 ,4 ,5 ]
Wei, Bo-Bo [6 ]
Chen, Xi [4 ,5 ]
Zhang, Ze [1 ,2 ]
Zhao, Xiuzhu [1 ,2 ]
Qiu, Chudan [1 ,2 ]
Tian, Yu [1 ,2 ]
Ji, Yunlan [1 ,2 ]
Xin, Tao [1 ,2 ,3 ]
Lu, Dawei [1 ,2 ,3 ]
Li, Jun [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
[5] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
[6] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
SYSTEMS;
D O I
10.1103/PhysRevLett.124.250601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The out-of-time-ordered correlators (OTOC), a fundamental concept for quantifying quantum information scrambling, has recently been suggested to be an order parameter to dynamically detect both equilibrium quantum phase transitions (EQPTs) and dynamical quantum phase transitions (DQPTs). Here we report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator. We observe that the quench dynamics of the OTOC can unambiguously detect the DQPTs and the equilibrium critical point, while conventional order parameters such as the longitudinal magnetization can not. Moreover, we investigate the two-body correlations throughout the quench dynamics, and find that OTOC can extract the equilibrium critical point with higher accuracy and is more robust to decoherence than that of two-body correlation. Our experiment paves a way for experimentally investigating DQPTs through OTOCs and for studying the EQPTs through the nonequilibrium quantum quench dynamics with quantum simulators.
引用
收藏
页数:6
相关论文
共 55 条
[1]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[2]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[3]  
[Anonymous], 2008, QUANTUM ISING PHASES
[4]   Solvable model for a dynamical quantum phase transition from fast to slow scrambling [J].
Banerjee, Sumilan ;
Altman, Ehud .
PHYSICAL REVIEW B, 2017, 95 (13)
[5]   Density-matrix renormalization-group study of the disorder line in the quantum axial next-nearest-neighbor Ising model [J].
Beccaria, M ;
Campostrini, M ;
Feo, A .
PHYSICAL REVIEW B, 2006, 73 (05)
[6]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[7]   Scrambling and thermalization in a diffusive quantum many-body system [J].
Bohrdt, A. ;
Mendl, C. B. ;
Endres, M. ;
Knap, M. .
NEW JOURNAL OF PHYSICS, 2017, 19
[8]   Dynamical topological order parameters far from equilibrium [J].
Budich, Jan Carl ;
Heyl, Markus .
PHYSICAL REVIEW B, 2016, 93 (08)
[9]   Thermodynamics of quantum information scrambling [J].
Campisi, Michele ;
Goold, John .
PHYSICAL REVIEW E, 2017, 95 (06)
[10]  
Cardy J., 1996, SCALING RENORMALIZAT