Automatic differentiation of rigid body dynamics for optimal control and estimation

被引:33
|
作者
Giftthaler, Markus [1 ]
Neunert, Michael [1 ]
Stauble, Markus [1 ]
Frigerio, Marco [2 ]
Semini, Claudio [2 ]
Buchli, Jonas [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Robot & Intelligent Syst, Agile & Dexterous Robot Lab, Zurich, Switzerland
[2] Ist Italiano Tecnol, Dept Adv Robot, Genoa, Italy
关键词
Automatic differentiation; rigid body dynamics; trajectory optimization; numerical optimal control; NONLINEAR OPTIMIZATION; SIMULATION; ALGORITHM; TRAJECTORIES;
D O I
10.1080/01691864.2017.1395361
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Many algorithms for control, optimization and estimation in robotics depend on derivatives of the underlying system dynamics, e.g. to compute linearizations, sensitivities or gradient directions. However, we show that when dealing with rigid body dynamics, these derivatives are difficult to derive analytically and to implement efficiently. To overcome this issue, we extend the modelling tool 'RobCoGen' to be compatible with Automatic Differentiation. Additionally, we propose how to automatically obtain the derivatives and generate highly efficient source code. We highlight the flexibility and performance of the approach in two application examples. First, we show a trajectory optimization example for the quadrupedal robot HyQ, which employs auto-differentiation on the dynamics including a contact model. Second, we present a hardware experiment in which a six-DoF robotic arm avoids a randomly moving obstacle in a go-to task by fast, dynamic replanning.
引用
收藏
页码:1225 / 1237
页数:13
相关论文
共 50 条
  • [1] Discrete rigid body dynamics and optimal control
    Bloch, AM
    Crouch, PE
    Marsden, JE
    Ratiu, TS
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2249 - 2254
  • [2] Discrete rigid body dynamics and optimal control
    Bloch, Anthony M.
    Crouch, Peter E.
    Marsden, Jerrold E.
    Ratiu, Tudor S.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 2249 - 2254
  • [3] Fast Derivatives of Rigid Body Dynamics for Control, Optimization and Estimation
    Neunert, Michael
    Giftthaler, Markus
    Frigerio, Marco
    Semini, Claudio
    Buchli, Jonas
    2016 IEEE INTERNATIONAL CONFERENCE ON SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR), 2016, : 91 - 97
  • [4] Optimal attitude control of a rigid body
    Spindler, K
    APPLIED MATHEMATICS AND OPTIMIZATION, 1996, 34 (01): : 79 - 90
  • [5] Optimal control of rotation of a rigid body
    Zelikin, MI
    DOKLADY AKADEMII NAUK, 1996, 346 (03) : 334 - 336
  • [6] Lifted contact dynamics for efficient optimal control of rigid body systems with contacts
    Katayama, Sotaro
    Ohtsuka, Toshiyuki
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 8879 - 8886
  • [7] Path Integral-Based Stochastic Optimal Control for Rigid Body Dynamics
    Theodorou, E. A.
    Buchli, J.
    Schaal, S.
    ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, 2009, : 219 - +
  • [8] Time optimal attitude control for a rigid body
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 5210 - +
  • [9] Optimal control, of a rigid body with dissimilar actuators
    Queen, EM
    Silverberg, L
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1996, 19 (03) : 738 - 740
  • [10] Optimal attitude control for a rigid body with symmetry
    Lee, Theyoung
    McClamroch, N. Harris
    Leok, Melvin
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 1355 - +