ON THE FRECHET DERIVATIVE IN ELASTIC OBSTACLE SCATTERING

被引:24
作者
Le Louer, Frederique [1 ]
机构
[1] Univ Gottingen, Inst Numer & Andgewandte Math, D-37083 Gottingen, Germany
关键词
elastic scattering; Navier equation; Frechet derivative; far-field pattern; Dirichlet condition; Neumann condition; impedance condition; inverse scattering; BOUNDARY INTEGRAL-OPERATORS; FAR-FIELD; DIFFERENTIABILITY;
D O I
10.1137/110834160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and characterizations of the Frechet derivative of solutions to time-harmonic elastic scattering problems with respect to the boundary of the obstacle. Our analysis is based on a technique-the factorization of the difference of the far-field pattern for two different scatterers-introduced by Kress and Paivarinta [SIAM J. Appl. Math., 59 (1999), pp. 1413-1426] to establish Frechet differentiability in acoustic scattering. For the Dirichlet boundary condition an alternative proof of a differentiability result due to Charalambopoulos is provided, and new results are proven for the Neumann and impedance exterior boundary value problems.
引用
收藏
页码:1493 / 1507
页数:15
相关论文
共 28 条
[21]  
Kupradze V.D., 1965, Potential methods in the theory of elasticity
[22]  
Kupradze VD, 1979, APPL MATH MECH, V25
[23]  
LELOUER F, 2009, THESIS U RENNES 1 RE
[24]  
Potthast R, 1996, MATH METHOD APPL SCI, V19, P1157, DOI 10.1002/(SICI)1099-1476(199610)19:15<1157::AID-MMA814>3.0.CO
[25]  
2-Y
[26]   FRECHET DIFFERENTIABILITY OF BOUNDARY INTEGRAL-OPERATORS IN INVERSE ACOUSTIC SCATTERING [J].
POTTHAST, R .
INVERSE PROBLEMS, 1994, 10 (02) :431-447
[27]  
Potthast R., 1994, THESIS GEORG AUGUST
[28]  
Potthast R., 1996, J. Inverse Ill-Posed Probl., V4, P67