FINITE ELEMENT METHODS FOR THE DISPLACEMENT OBSTACLE PROBLEM OF CLAMPED PLATES

被引:41
作者
Brenner, Susanne C. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
Zhang, Yi [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Displacement obstacle; clamped Kirchhoff plate; fourth order; variational inequality; finite element; discontinuous Galerkin; APPROXIMATION; INTERPOLATION;
D O I
10.1090/S0025-5718-2012-02602-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study finite element methods for the displacement obstacle problem of clamped Kirchhoff plates. A unified convergence analysis is provided for C-1 finite element methods, classical nonconforming finite element methods and C-0 interior penalty methods. Under the condition that the obstacles are sufficiently smooth and that they are separated from each other and the zero displacement boundary constraint, we prove that the convergence in the energy norm is O(h) for convex domains.
引用
收藏
页码:1247 / 1262
页数:16
相关论文
共 52 条
[1]  
Adini A., 1961, NSF Report G. 7337
[2]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies
[3]   Discontinuous Galerkin finite element method for the fourth-order obstacle problem [J].
An, Rong .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) :351-355
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]  
[Anonymous], 1971, Abh. Math. Sem. Univ. Hamburg
[6]  
[Anonymous], 2001, Spectral problems associated with corner singularities of solutions to elliptic equations
[7]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[8]  
[Anonymous], 1988, VARIATIONAL PRINCIPL
[9]  
[Anonymous], 1965, P C MATR METH STRUCT
[10]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&