Characterizing white matter connectivity in Alzheimer's disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets

被引:32
作者
Dou, Xuejiao [1 ,2 ,3 ]
Yao, Hongxiang [4 ]
Feng, Feng [5 ]
Wang, Pan [6 ,7 ]
Zhou, Bo [5 ]
Jin, Dan [1 ,2 ,3 ]
Yang, Zhengyi [1 ,2 ]
Li, Jin [1 ,2 ]
Zhao, Cui [5 ]
Wang, Luning [5 ]
An, Ningyu [4 ]
Liu, Bing [1 ,2 ,3 ,8 ]
Zhang, Xi [5 ]
Liu, Yong [1 ,2 ,3 ,8 ]
机构
[1] Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 2, Natl Clin Res Ctr Geriatr Dis, Dept Radiol, Beijing, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 2, Natl Clin Res Ctr Geriatr Dis, Dept Neurol, Beijing 100853, Peoples R China
[6] Tianjin Huanhu Hosp, Dept Neurol, Tianjin 300350, Peoples R China
[7] Nankai Univ, Dept Neurol, Huanhu Hosp, Tianjin, Peoples R China
[8] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Inst Automat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Alzheimer's disease; Diffusion-weighted MRI; Tract-specific analysis; White matter; Support vector machine; ALTERED SPONTANEOUS ACTIVITY; FUNCTIONAL CONNECTIVITY; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; DIFFUSION; DEMENTIA; TRACT; CLASSIFICATION; RECOMMENDATIONS;
D O I
10.1016/j.cortex.2020.03.032
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia. Diffusion tensor imaging (DTI) has been widely used to show structural integrity and delineate white matter (WM) degeneration in AD. The automated fiber quantification (AFQ) method is a fully automated approach that can rapidly and reliably identify major WM fiber tracts and evaluate WM properties. The main aim of this study was to assess WM integrity and abnormities in a cohort of patients with amnestic mild cognitive impairment (aMCI) and AD as well as normal controls (NCs). For this purpose, we first used AFQ to identify 20 major WM tracts and assessed WM integrity and abnormalities in a cohort of 120 subjects (39 NCs, 34 aMCI patients and 47 AD patients) in a discovery dataset and 122 subjects (43 NCs, 37 aMCI patients and 42 AD patients) in a replicated dataset. Pointwise differences along WM tracts were identified in the discovery dataset and simultaneously confirmed in the replicated dataset. Next, we investigated the utility of DTI measures along WM tracts as features to distinguish patients with AD from NCs via multilevel cross validation using a support vector machine. Correlation analysis revealed the identified microstructural WM alterations and classification output to be highly associated with cognitive ability in the patient groups, suggesting that they may be a robust biomarker of AD. This systematic study provides a pipeline to examine WM integrity and its potential clinical application in AD and may be useful for studying other neurological and psychiatric disorders. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:390 / 405
页数:16
相关论文
共 88 条
  • [1] The search for imaging biomarkers in psychiatric disorders
    Abi-Dargham, Anissa
    Horga, Guillermo
    [J]. NATURE MEDICINE, 2016, 22 (11) : 1248 - 1255
  • [2] Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
    Abraham, Alexandre
    Milham, Michael P.
    Di Martino, Adriana
    Craddock, R. Cameron
    Samaras, Dimitris
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. NEUROIMAGE, 2017, 147 : 736 - 745
  • [3] At the interface of sensory and motor dysfunctions and Alzheimer's disease
    Albers, Mark W.
    Gilmore, Grover C.
    Kaye, Jeffrey
    Murphy, Claire
    Wingfield, Arthur
    Bennett, David A.
    Boxer, Adam L.
    Buchman, Aron S.
    Cruickshanks, Karen J.
    Devanand, Davangere P.
    Duffy, Charles J.
    Gall, Christine M.
    Gates, George A.
    Granholm, Ann-Charlotte
    Hensch, Takao
    Holtzer, Roee
    Hyman, Bradley T.
    Lin, Frank R.
    Mc Kee, Ann C.
    Morris, John C.
    Petersen, Ronald C.
    Silbert, Lisa C.
    Stuble, Robert G.
    Trojanowski, John Q.
    Verghese, Joe
    Wilson, Donald A.
    Xu, Shunbin
    Zhang, Li I.
    [J]. ALZHEIMERS & DEMENTIA, 2015, 11 (01) : 70 - 98
  • [4] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [5] [Anonymous], 2018, WORLD ALZH REP STAT
  • [6] Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks
    Basaia, Silvia
    Agosta, Federica
    Wagner, Luca
    Canu, Elisa
    Magnani, Giuseppe
    Santangelo, Roberto
    Filippi, Massimo
    [J]. NEUROIMAGE-CLINICAL, 2019, 21
  • [7] The European DTI Study on Dementia - A multicenter DTI and MRI study on Alzheimer's disease and Mild Cognitive Impairment
    Brueggen, Katharina
    Grothe, Michel J.
    Dyrba, Martin
    Fellgiebel, Andreas
    Fischer, Florian
    Filippi, Massimo
    Agosta, Federica
    Nestor, Peter
    Meisenzahl, Eva
    Blautzik, Janusch
    Froelich, Lutz
    Hausner, Lucrezia
    Bokde, Arun L. W.
    Frisoni, Giovanni
    Pievani, Michela
    Kloeppel, Stefan
    Prvulovic, David
    Barkhof, Frederik
    Pouwels, Petra J. W.
    Schroeder, Johannes
    Hampel, Harald
    Hauenstein, Karlheinz
    Teipel, Stefan
    [J]. NEUROIMAGE, 2017, 144 : 305 - 308
  • [8] Virtual in vivo interactive dissection of white matter fasciculi in the human brain
    Catani, M
    Howard, RJ
    Pajevic, S
    Jones, DK
    [J]. NEUROIMAGE, 2002, 17 (01) : 77 - 94
  • [9] MR Diffusion Tensor Imaging: A Window into White Matter Integrity of the Working Brain
    Chanraud, Sandra
    Zahr, Natalie
    Sullivan, Edith V.
    Pfefferbaum, Adolf
    [J]. NEUROPSYCHOLOGY REVIEW, 2010, 20 (02) : 209 - 225
  • [10] Precision diagnostics based on machine learning-derived imaging signatures
    Davatzikos, Christos
    Sotiras, Aristeidis
    Fan, Yong
    Habes, Mohamad
    Erus, Guray
    Rathore, Saima
    Bakas, Spyridon
    Chitalia, Rhea
    Gastounioti, Aimilia
    Kontos, Despina
    [J]. MAGNETIC RESONANCE IMAGING, 2019, 64 : 49 - 61