The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model

被引:76
作者
Wang, Chunming [1 ]
Gong, Yihong [1 ]
Zhong, Yuan [1 ]
Yao, Yongchang [1 ]
Su, Kai [1 ]
Wang, Dong-An [1 ]
机构
[1] Nanyang Technol Univ, Div Bioengn, Sch Chem & Biomed Engn, Singapore 637457, Singapore
关键词
Hydrogel; Microcarrier; Anchorage-dependent cells; Apoptosis; Integrin; Osteogenesis; MESENCHYMAL STEM-CELLS; OSTEOBLAST-LIKE CELLS; IN-VITRO; HYDROGELS; APOPTOSIS; ADHESION; MICROCARRIERS; CHONDROCYTES; INTEGRINS; PHENOTYPE;
D O I
10.1016/j.biomaterials.2008.12.072
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The use of injectable hydrogels for tissue engineering purposes such as bone regeneration has been hampered by the mass depletion of cells after encapsulation, due to the lack of a proper interface between hydrogel matrices and osteo-progenitor cells. Efforts to graft bioactive molecules as cell attachment moieties have achieved limited success. In this study, we devised a solution to promote cellular focal adhesion within hydrogels, and elicit the mechanism behind cellular survival/death therein. We found that the fulfillment of ligation between cellular integrins and extracellular ligands, instead of the expression of integrins per se, is essential to avoid apoptosis in gel-encapsulated anchorage-dependent cells (ADCs). Absence of such ligation brought about mass cell death in our osteogenic model with osteoblasts (as representative of ADCs) and failure of osteogenic commitment of mesenchymal stem cells (as representative of anchorage-dependent progenitors). We have designed a gel-based composite system that works as a suspension of injectable cell-laden microcarriers in hydrogel, as compared to the conventional cell-suspended hydrogels. Injectable microscopic anchors (microcarriers) not only provide platforms for cellular focal adhesion but also facilitate the cells to overcome gel enlacement and fully spread out into their natural morphology. Further in vitro and in vivo osteogenic investigations show the composites to be a competent potential injectable vehicle for the conveyance of ADCs and regenerations of bone and other tissues. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2259 / 2269
页数:11
相关论文
共 46 条
[1]  
Anderson H.C., 1993, Physiology and Pharmacology of Bone
[2]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[3]  
Bahrami S, 2000, ANAT REC, V259, P124
[4]   DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS [J].
BENYA, PD ;
SHAFFER, JD .
CELL, 1982, 30 (01) :215-224
[5]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[6]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[7]   Development of custom-built bone scaffolds using mesenchymal stem cells and apatite-wollastonite glass-ceramics [J].
Dyson, Jennifer A. ;
Genever, Paul G. ;
Dalgarno, Kenneth W. ;
Wood, David J. .
TISSUE ENGINEERING, 2007, 13 (12) :2891-2901
[8]   Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing [J].
Fedorovich, Natalja E. ;
Alblas, Jacqueline ;
de Wijn, Joost R. ;
Hennink, Wim E. ;
Verbout, Ab J. ;
Dhert, Wouter J. A. .
TISSUE ENGINEERING, 2007, 13 (08) :1905-1925
[9]   Integrins and anoikis [J].
Frisch, SM ;
Ruoslahti, E .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (05) :701-706
[10]   Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors [J].
Green, DW ;
Leveque, I ;
Walsh, D ;
Howard, D ;
Yang, XB ;
Partridge, K ;
Mann, S ;
Oreffo, ROC .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (06) :917-923