Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation

被引:571
作者
Schwille, P [1 ]
Haupts, U [1 ]
Maiti, S [1 ]
Webb, WW [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
关键词
D O I
10.1016/S0006-3495(99)77065-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from similar to 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.
引用
收藏
页码:2251 / 2265
页数:15
相关论文
共 56 条
[1]   FLUORESCENCE CORRELATION SPECTROSCOPY AS A PROBE OF MOLECULAR-DYNAMICS [J].
ARAGON, SR ;
PECORA, R .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (04) :1791-1803
[2]   2-PHOTON FLUORESCENCE CORRELATION SPECTROSCOPY - METHOD AND APPLICATION TO THE INTRACELLULAR ENVIRONMENT [J].
BERLAND, KM ;
SO, PTC ;
GRATTON, E .
BIOPHYSICAL JOURNAL, 1995, 68 (02) :694-701
[3]  
Bieschke J., 1997, FLUORESCENT MICROSCO, V2, P81
[4]   Kinetics of conformational fluctuations in DNA hairpin-loops [J].
Bonnet, G ;
Krichevsky, O ;
Libchaber, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8602-8606
[5]   Single-molecule identification of Coumarin-120 by time-resolved fluorescence detection: Comparison of one- and two-photon excitation in solution [J].
Brand, L ;
Eggeling, C ;
Zander, C ;
Drexhage, KH ;
Seidel, CAM .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (24) :4313-4321
[6]   Fluorescence correlation microscopy of cells in the presence of autofluorescence [J].
Brock, R ;
Hink, MA ;
Jovin, TM .
BIOPHYSICAL JOURNAL, 1998, 75 (05) :2547-2557
[7]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[8]   SORTING SINGLE MOLECULES - APPLICATION TO DIAGNOSTICS AND EVOLUTIONARY BIOTECHNOLOGY [J].
EIGEN, M ;
RIGLER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :5740-5747
[9]   FLUORESCENCE CORRELATION SPECTROSCOPY .1. CONCEPTUAL BASIS AND THEORY [J].
ELSON, EL ;
MAGDE, D .
BIOPOLYMERS, 1974, 13 (01) :1-27
[10]   Constrained diffusion or immobile fraction on cell surfaces: A new interpretation [J].
Feder, TJ ;
BrustMascher, I ;
Slattery, JP ;
Baird, B ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1996, 70 (06) :2767-2773