The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface

被引:106
作者
Al-Ketan, Oraib
Abu Al-Rub, Rashid K. [1 ]
机构
[1] Masdar Inst Sci & Technol, Inst Ctr Energy, Mech & Mat Engn Dept, Abu Dhabi, U Arab Emirates
关键词
INTERPENETRATING PHASE COMPOSITES; MANUFACTURED POROUS BIOMATERIALS; FINITE-ELEMENT PREDICTIONS; LATTICE STRUCTURES; THERMAL-EXPANSION; METALLIC FOAMS; UNIT CELLS; DESIGN; METAMATERIALS; SCAFFOLDS;
D O I
10.1557/jmr.2018.1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Architected materials are materials engineered to utilize their topological aspects to enhance the related physical and mechanical properties. With the witnessed progressive advancements in fabrication techniques, obstacles and challenges experienced in manufacturing geometrically complex architected materials are mitigated. Different strut-based architected lattice structures have been investigated for their topology-property relationship. However, the focus on lattice design has recently shifted toward structures with mathematically defined architectures. In this work, we investigate the architecture-property relationship associated with the possible configurations of employing the mathematically attained Schoen's I-WP (IWP) minimal surface to create lattice structures. Results of mechanical testing showed that sheet-based IWP lattice structures exhibit a stretching-dominated behavior with the highest structural efficiency as compared to other forms of strut-based and skeletal-based lattice structures. This study presents experimental and computational evidence of the robustness and suitability of sheet-based IWP structures for different engineering applications, where strong and lightweight materials with exceptional energy absorption capabilities are required.
引用
收藏
页码:343 / 359
页数:17
相关论文
共 79 条
[1]   Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures [J].
Abueidda, Diab W. ;
Bakir, Mete ;
Abu Al-Rub, Rashid K. ;
Bergstrom, Jorgen S. ;
Sobh, Nahil A. ;
Jasiuk, Iwona .
MATERIALS & DESIGN, 2017, 122 :255-267
[2]   Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces [J].
Abueidda, Diab W. ;
Abu Al-Rub, Rashid K. ;
Dalaq, Ahmed S. ;
Lee, Dong-Wook ;
Khan, Kamran A. ;
Jasiuk, Iwona .
MECHANICS OF MATERIALS, 2016, 95 :102-115
[3]   Electrical conductivity of 3D periodic architectured interpenetrating phase composites with carbon nanostructured-epoxy reinforcements [J].
Abueidda, Diab W. ;
Abu Al-Rub, Rashid K. ;
Dalaq, Ahmed S. ;
Younes, Hammad A. ;
Al Ghaferi, Amal A. ;
Shah, Tushar K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 118 :127-134
[4]   Micromechanical finite element predictions of a reduced coefficient of thermal expansion for 3D periodic architectured interpenetrating phase composites [J].
Abueidda, Diab W. ;
Dalaq, Ahmed S. ;
Abu Al-Rub, Rashid K. ;
Jasiuk, Iwona .
COMPOSITE STRUCTURES, 2015, 133 :85-97
[5]   Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements [J].
Abueidda, Diab W. ;
Dalaq, Ahmed S. ;
Abu Al-Rub, Rashid K. ;
Younes, Hammad A. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2015, 92 :80-89
[6]   Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties [J].
Ahmadi, Seyed Mohammad ;
Yavari, Saber Amin ;
Wauthle, Ruebn ;
Pouran, Behdad ;
Schrooten, Jan ;
Weinans, Harrie ;
Zadpoor, Amir A. .
MATERIALS, 2015, 8 (04) :1871-1896
[7]   Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures [J].
Al-Ketan, Oraib ;
Soliman, Ahmad ;
AlQubaisi, Ayesha M. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (02)
[8]   Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures [J].
Al-Ketan, Oraib ;
Assad, Mhd Adel ;
Abu Al-Ru, Rashid K. .
COMPOSITE STRUCTURES, 2017, 176 :9-19
[9]   Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials [J].
Al-Ketan, Oraib ;
Abu Al-Rub, Rashid K. ;
Rowshan, Reza .
ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (02)
[10]   Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique [J].
Alsalla, Hamza ;
Hao, Liang ;
Smith, Christopher .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 669 :1-6