Multi-Agent Deep Reinforcement Learning for Sectional AGC Dispatch

被引:17
|
作者
Li, Jiawen [1 ]
Yu, Tao [1 ]
Zhu, Hanxin [1 ]
Li, Fusheng [1 ]
Lin, Dan [1 ]
Li, Zhuohuan [1 ]
机构
[1] South China Univ Technol, Coll Elect Power, Guangzhou 510640, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
Automatic generation control; Security; Power grids; Training; Phasor measurement units; Optimization; Voltage measurement; hierarchical multi-agent deep deterministic policy gradient; sectional AGC dispatch; reinforcement learning; AUTOMATIC-GENERATION CONTROL;
D O I
10.1109/ACCESS.2020.3019929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the problem of coordinating system economy, security and control performance in secondary frequency regulation of the power grid, a sectional automatic generation control (AGC) dispatch framework is proposed. The dispatch of AGC is classified as three sections with the sectional dispatch method. Besides, a hierarchical multi-agent deep deterministic policy gradient (HMA-DDPG) algorithm is proposed for the framework in this paper. This algorithm, considering economy and security of the system in AGC dispatch, can ensure the control performance of AGC. Furthermore, through simulation, the control effect of the sectional dispatch method and several AGC dispatch methods on the Guangdong province power grid system and the IEEE 39 bus system is compared. The result shows that the best effect can be achieved with the sectional dispatch method.
引用
收藏
页码:158067 / 158081
页数:15
相关论文
共 50 条
  • [41] Assured Deep Multi-Agent Reinforcement Learning for Safe Robotic Systems
    Riley, Joshua
    Calinescu, Radu
    Paterson, Colin
    Kudenko, Daniel
    Banks, Alec
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2021, 2022, 13251 : 158 - 180
  • [42] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Meghdeep Jana
    Leena Vachhani
    Arpita Sinha
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 724 - 745
  • [43] Multi-Agent Deep Reinforcement Learning for Coordinated Multipoint in Mobile Networks
    Schneider, Stefan
    Karl, Holger
    Khalili, Ramin
    Hecker, Artur
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 908 - 924
  • [44] Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
    Rashid, Tabish
    Samvelyan, Mikayel
    de Witt, Christian Schroeder
    Farquhar, Gregory
    Foerster, Jakob
    Whiteson, Shimon
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [45] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [46] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [47] Noise Distribution Decomposition Based Multi-Agent Distributional Reinforcement Learning
    Geng, Wei
    Xiao, Baidi
    Li, Rongpeng
    Wei, Ning
    Wang, Dong
    Zhao, Zhifeng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (03) : 2301 - 2314
  • [48] A Multi-Agent Deep Reinforcement Learning Approach for Practical Decentralized UAV Collision Avoidance
    Thumiger, Nicholas
    Deghat, Mohammad
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2174 - 2179
  • [49] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Jana, Meghdeep
    Vachhani, Leena
    Sinha, Arpita
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 724 - 745
  • [50] Deep Reinforcement Learning for Multi-Agent Power Control in Heterogeneous Networks
    Zhang, Lin
    Liang, Ying-Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (04) : 2551 - 2564