A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space

被引:1
作者
Schiela, Anton [1 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
Non-convex optimization; optimization in function space; cubic regularization; GLOBAL CONVERGENCE; TRUST; MINIMIZATION;
D O I
10.1080/01630563.2018.1499114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact that in such problems one often has to deal with more than one norm. Global and local convergence results are established in a general framework.
引用
收藏
页码:85 / 118
页数:34
相关论文
共 50 条
  • [21] Compressed gradient tracking algorithms for distributed nonconvex optimization
    Xu, Lei
    Yi, Xinlei
    Wen, Guanghui
    Shi, Yang
    Johansson, Karl H.
    Yang, Tao
    AUTOMATICA, 2025, 177
  • [22] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    AUTOMATICA, 2025, 171
  • [23] Stochastic Bigger Subspace Algorithms for Nonconvex Stochastic Optimization
    Yuan, Gonglin
    Zhou, Yingjie
    Wang, Liping
    Yang, Qingyuan
    IEEE ACCESS, 2021, 9 : 119818 - 119829
  • [24] On the use of iterative methods in cubic regularization for unconstrained optimization
    Tommaso Bianconcini
    Giampaolo Liuzzi
    Benedetta Morini
    Marco Sciandrone
    Computational Optimization and Applications, 2015, 60 : 35 - 57
  • [25] On the use of iterative methods in cubic regularization for unconstrained optimization
    Bianconcini, Tommaso
    Liuzzi, Giampaolo
    Morini, Benedetta
    Sciandrone, Marco
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (01) : 35 - 57
  • [26] A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques
    Bianconcini, Tommaso
    Sciandrone, Marco
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (05) : 1008 - 1035
  • [27] Local Convexification of the Lagrangian Function in Nonconvex Optimization
    D. Li
    X. L. Sun
    Journal of Optimization Theory and Applications, 2000, 104 : 109 - 120
  • [28] Local convexification of the Lagrangian function in nonconvex optimization
    Li, D
    Sun, XL
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (01) : 109 - 120
  • [29] A general asymptotic function with applications in nonconvex optimization
    Hadjisavvas, Nicolas
    Lara, Felipe
    Dinh The Luc
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 78 (01) : 49 - 68
  • [30] A general asymptotic function with applications in nonconvex optimization
    Nicolas Hadjisavvas
    Felipe Lara
    Dinh The Luc
    Journal of Global Optimization, 2020, 78 : 49 - 68