On the effect of prestrain and residual stress in thin biological membranes

被引:95
作者
Rausch, Manuel K. [1 ]
Kuhl, Ellen [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Dept Bioengn, Stanford, CA USA
[3] Dept Cardiothorac Surg, Stanford, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Prestrain; Residual stress; Parameter identification; Finite element method; Mitral leaflet; VALVE ANTERIOR LEAFLET; BEATING OVINE HEART; FINITE-ELEMENT-ANALYSIS; IN-VIVO; CONSTITUTIVE-EQUATIONS; STRAIN CHARACTERISTICS; MATERIAL SYMMETRY; BEHAVIOR; TISSUE; MECHANICS;
D O I
10.1016/j.jmps.2013.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and tissue engineering of replacement constructs for thin biological membranes. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1955 / 1969
页数:15
相关论文
共 49 条
[21]   A CONSTITUTIVE THEORY FOR BIOMEMBRANES - APPLICATION TO EPICARDIAL MECHANICS [J].
HUMPHREY, JD ;
STRUMPF, RK ;
YIN, FCP .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1992, 114 (04) :461-466
[22]   Active stiffening of mitral valve leaflets in the beating heart [J].
Itoh, Akinobu ;
Krishnamurthy, Gaurav ;
Swanson, Julia C. ;
Ennis, Daniel B. ;
Bothe, Wolfgang ;
Kuhl, Ellen ;
Karlsson, Matts ;
Davis, Lauren R. ;
Miller, D. Craig ;
Ingels, Neil B., Jr. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2009, 296 (06) :H1766-H1773
[23]   A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet [J].
Jimenez, Jorge H. ;
Liou, Shasan W. ;
Padala, Muralidhar ;
He, Zhaoming ;
Sacks, Michael ;
Gorman, Robert C. ;
Gorman, Joseph H., III ;
Yoganathan, Ajit P. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2007, 134 (06) :1562-1568
[24]   The use of a virtual configuration in formulating constitutive equations for residually stressed elastic materials [J].
Johnson, BE ;
Hoger, A .
JOURNAL OF ELASTICITY, 1995, 41 (03) :177-215
[25]   Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis [J].
Krishnamurthy, Gaurav ;
Ennis, Daniel B. ;
Itoh, Akinobu ;
Bothe, Wolfgang ;
Swanson, Julia C. ;
Karlsson, Matts ;
Kuhl, Ellen ;
Miller, D. Craig ;
Ingels, Neil B., Jr. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 295 (03) :H1141-H1149
[26]   Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart [J].
Krishnamurthy, Gaurav ;
Itoh, Akinobu ;
Swanson, Julia C. ;
Bothe, Wolfgang ;
Karlsson, Matts ;
Kuhl, Ellen ;
Miller, D. Craig ;
Ingels, Neil B., Jr. .
JOURNAL OF BIOMECHANICS, 2009, 42 (16) :2697-2701
[27]   Stress-strain behavior of mitral valve leaflets in the beating ovine heart [J].
Krishnamurthy, Gaurav ;
Itoh, Akinobu ;
Bothe, Wolfgang ;
Swanson, Julia C. ;
Kuhl, Ellen ;
Karlsson, Matts ;
Miller, D. Craig ;
Ingels, Neil B., Jr. .
JOURNAL OF BIOMECHANICS, 2009, 42 (12) :1909-1916
[28]   STRESS-STRAIN CHARACTERISTICS OF PORCINE MITRAL-VALVE TISSUE - PARALLEL VERSUS PERPENDICULAR COLLAGEN ORIENTATION [J].
KUNZELMAN, KS ;
COCHRAN, RP .
JOURNAL OF CARDIAC SURGERY, 1992, 7 (01) :71-78
[29]   Anterior Mitral Leaflet Curvature During the Cardiac Cycle in the Normal Ovine Heart [J].
Kvitting, John-Peder Escobar ;
Bothe, Wolfgang ;
Goektepe, Serdar ;
Rausch, Manuel K. ;
Swanson, Julia C. ;
Kuhl, Ellen ;
Ingels, Neil B., Jr. ;
Miller, D. Craig .
CIRCULATION, 2010, 122 (17) :1683-1689
[30]   A constitutive law for mitral valve tissue [J].
May-Newman, K ;
Yin, FCP .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1998, 120 (01) :38-47