On the effect of prestrain and residual stress in thin biological membranes

被引:95
作者
Rausch, Manuel K. [1 ]
Kuhl, Ellen [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Dept Bioengn, Stanford, CA USA
[3] Dept Cardiothorac Surg, Stanford, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Prestrain; Residual stress; Parameter identification; Finite element method; Mitral leaflet; VALVE ANTERIOR LEAFLET; BEATING OVINE HEART; FINITE-ELEMENT-ANALYSIS; IN-VIVO; CONSTITUTIVE-EQUATIONS; STRAIN CHARACTERISTICS; MATERIAL SYMMETRY; BEHAVIOR; TISSUE; MECHANICS;
D O I
10.1016/j.jmps.2013.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the difference between ex vivo and in vivo measurements is critical to interpret the load carrying mechanisms of living biological systems. For the past four decades, the ex vivo stiffness of thin biological membranes has been characterized using uniaxial and biaxial tests with remarkably consistent stiffness parameters, even across different species. Recently, the in vivo stiffness was characterized using combined imaging techniques and inverse finite element analyses. Surprisingly, ex vivo and in vivo stiffness values differed by up to three orders of magnitude. Here, for the first time, we explain this tremendous discrepancy using the concept of prestrain. We illustrate the mathematical modeling of prestrain in nonlinear continuum mechanics through the multiplicative decomposition of the total elastic deformation into prestrain-induced and load-induced parts. Using in vivo measured membrane kinematics and associated pressure recordings, we perform an inverse finite element analysis for different prestrain levels and show that the resulting membrane stiffness may indeed differ by four orders of magnitude depending on the prestrain level. Our study motivates the hypothesis that prestrain is important to position thin biological membranes in vivo into their optimal operating range, right at the transition point of the stiffening regime. Understanding the effect of prestrain has direct clinical implications in regenerative medicine, medical device design, and tissue engineering of replacement constructs for thin biological membranes. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1955 / 1969
页数:15
相关论文
共 49 条
[1]   Perspectives on biological growth and remodeling [J].
Ambrosi, D. ;
Ateshian, G. A. ;
Arruda, E. M. ;
Cowin, S. C. ;
Dumais, J. ;
Goriely, A. ;
Holzapfel, G. A. ;
Humphrey, J. D. ;
Kemkemer, R. ;
Kuhl, E. ;
Olberding, J. E. ;
Taber, L. A. ;
Garikipati, K. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :863-883
[2]   On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration [J].
Amini, Rouzbeh ;
Eckert, Chad E. ;
Koomalsingh, Kevin ;
McGarvey, Jeremy ;
Minakawa, Masahito ;
Gorman, Joseph H. ;
Gorman, Robert C. ;
Sacks, Michael S. .
ANNALS OF BIOMEDICAL ENGINEERING, 2012, 40 (07) :1455-1467
[3]  
[Anonymous], 2009, J MECH PHYS SOLIDS
[4]   Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries [J].
Balzani, D. ;
Schroeder, J. ;
Gross, D. .
ACTA BIOMATERIALIA, 2006, 2 (06) :609-618
[5]   Spherical indentation of freestanding circular thin films in the membrane regime [J].
Begley, MR ;
Mackin, TJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (09) :2005-2023
[6]   How Do Annuloplasty Rings Affect Mitral Annular Strains in the Normal Beating Ovine Heart? [J].
Bothe, Wolfgang ;
Rausch, Manuel K. ;
Kvitting, John-Peder Escobar ;
Echtner, Dominique K. ;
Walther, Mario ;
Ingels, Neil B., Jr. ;
Kuhl, Ellen ;
Miller, D. Craig .
CIRCULATION, 2012, 126 (11) :S231-S238
[7]   Origin of axial prestretch and residual stress in arteries [J].
Cardamone, L. ;
Valentin, A. ;
Eberth, J. F. ;
Humphrey, J. D. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2009, 8 (06) :431-446
[8]   Constitutive function, residual stress, and state of uniform stress in arteries [J].
Chen, Yi-chao ;
Eberth, John F. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (06) :1145-1157
[9]  
Clark E., 1973, J THORA CARDIOVASC S, V66, P202
[10]  
Cochran R P, 1991, ASAIO Trans, V37, pM447