An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices

被引:51
作者
Chawla, Sheetal [1 ]
Rawal, Rachna [1 ]
Sharma, Swati [1 ]
Pundir, Chandra Shekhar [1 ]
机构
[1] Maharshi Dayanand Univ, Dept Biochem, Rohtak 124001, Haryana, India
关键词
Biosensors; Enzymes; Immobilisation; Optimisation; NiNPs; cMWCNT; CHITOSAN; MATRIX; NANOTUBES; NANOCOMPOSITE; FABRICATION;
D O I
10.1016/j.bej.2012.07.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A method is described for construction of an enzyme electrode for detection of phenolic compounds based on covalent immobilization of laccase onto nickel nanoparticles (NiNPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite electrodeposited onto gold (Au) electrode. The modified electrode was characterized at different stages of its construction by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltam-mograms and electrochemical impedance spectroscopy (EIS). An amperometric biosensor for phenolic compounds was fabricated by connecting enzyme electrode (Lac/NiNPs/cMWCNTs/PANI/AuE) as working electrode, with Ag/AgCl as reference electrode and Pt wire as auxiliary electrode through potentiostat. The biosensor showed optimum response at pH 5.5 (0.1 M acetate buffer) and 35 degrees C, when operated at a scan rate of 20 mV s(-1). Linear range, response time, detection limit and sensitivity of biosensor were 0.1-10 mu M (lower concentration range) and 10-500 mu M (higher concentration range), 8s, 0.05 mu M and 0.694 mu A mu M-1 cm(-2) respectively. The biosensor measured total phenolic content in fruit juices. The enzyme electrode was used 200 times over a period of four months, when stored at 4 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 84
页数:9
相关论文
共 36 条
  • [1] ULTRAVIOLET SPECTROPHOTOMETRIC DETERMINATION OF PHENOLS IN NATURAL AND WASTE-WATERS WITH IODINE MONOBROMIDE
    BOSCH, F
    FONT, G
    MANES, J
    [J]. ANALYST, 1987, 112 (09) : 1335 - 1337
  • [2] Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline
    Brondani, Daniela
    Scheeren, Carla Weber
    Dupont, Jairton
    Vieira, Iolanda Cruz
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01) : 252 - 259
  • [3] Fabrication of multiwalled carbon nanotubes/polyaniline modified Au electrode for ascorbic acid determination
    Chauhan, Nidhi
    Narang, Jagriti
    Pundir, C. S.
    [J]. ANALYST, 2011, 136 (09) : 1938 - 1945
  • [4] Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode
    Chawla, Sheetal
    Rawal, Rachna
    Pundir, C. S.
    [J]. JOURNAL OF BIOTECHNOLOGY, 2011, 156 (01) : 39 - 45
  • [5] Preparation of nanoparticles which contains histidine for immobilization of Trametes versicolor laccase
    Corman, M. Emin
    Ozturk, Nevra
    Bereli, Nilay
    Akgol, Sinan
    Denizli, Adil
    [J]. JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2010, 63 (1-2) : 102 - 107
  • [6] Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment
    D'Annibale, A
    Stazi, SR
    Vinciguerra, V
    Di Mattia, E
    Sermanni, GG
    [J]. PROCESS BIOCHEMISTRY, 1999, 34 (6-7) : 697 - 706
  • [7] Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri
    Dhawan, S
    Lal, R
    Kuhad, RC
    [J]. LETTERS IN APPLIED MICROBIOLOGY, 2003, 36 (01) : 64 - 67
  • [8] Feldheim DL, 2002, METAL NANOPARTICLES: SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS, P1
  • [9] Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan
    Feng, JJ
    Zhao, G
    Xu, JJ
    Chen, HY
    [J]. ANALYTICAL BIOCHEMISTRY, 2005, 342 (02) : 280 - 286
  • [10] Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate
    Fernandes, Suellen Cadorin
    de Oliveira, Ines Rosane W. Z.
    Fatibello-Filho, Oralndo
    Spinelli, Almir
    Vieira, Iolanda Cruz
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2008, 133 (01) : 202 - 207