On fractional Poincar, inequalities

被引:41
作者
Hurri-Syrjanen, Ritva [1 ]
Vahakangas, Antti V. [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2013年 / 120卷
基金
芬兰科学院;
关键词
Lipschitz Domain; Dyadic Cube; Bound Lipschitz Domain; Common Face; Uniform Domain;
D O I
10.1007/s11854-013-0015-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that fractional (p, p)-Poincar, inequalities and even fractional Sobolev-Poincar, inequalities hold for bounded John domains, and especially for bounded Lipschitz domains. We also prove sharp fractional (1,p)-Poincar, inequalities for s-John domains.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 18 条
  • [1] Adams R., 1985, Sobolev Spaces
  • [2] BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
  • [3] Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications
    Bourgain, J
    Brezis, H
    Mironescu, P
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1): : 77 - 101
  • [4] Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
  • [5] Edmunds D.E., P AM MATH S IN PRESS
  • [6] GILBARG D., 2000, Elliptic Partial Differential Equations of Second Order, V2nd
  • [7] Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
  • [8] Harjulehto Petteri, 2011, DEP MATH STAT REPORT, V519
  • [9] CERTAIN CONVOLUTION INEQUALITIES
    HEDBERG, LI
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) : 505 - 510
  • [10] Hurri Ritva, 1988, ANN ACAD SCI FENN A, V71