MULTI-FREQUENCY SAR DATA FOR AGRICULTURE

被引:1
作者
Mattia, Francesco [1 ,2 ]
Balenzano, Anna [1 ,2 ]
Satalino, Giuseppe [1 ,2 ]
Lovergine, Francesco [1 ,2 ]
D'Addabbo, Annarita [1 ,2 ]
Palmisano, Davide [1 ,2 ]
Grassi, Riccardo [1 ,2 ]
Nutini, Francesco [1 ,2 ]
Boschetti, Mirco [1 ,2 ]
Verza, Georgia [1 ,2 ]
Rinaldi, Michele [3 ,4 ,5 ,6 ]
Ruggieri, Sergio [3 ,4 ,5 ,6 ]
De Santis, Angelo Pio [3 ,4 ,5 ,6 ]
Paredes Gomez, Vanessa [7 ]
Nafria Garcia, David Alfonso [7 ]
Tapete, Deodato [8 ]
机构
[1] Natl Res Council Italy CNR, Inst Electromagnet Sensing Environm IREA, Bari, Italy
[2] Natl Res Council Italy CNR, Inst Electromagnet Sensing Environm IREA, Milan, Italy
[3] Council Agr Res & Anal Agr Econ CREA, Ctr Cereal & Ind Crops CI, Foggia, Italy
[4] Council Agr Res & Anal Agr Econ CREA, Ctr Agr & Environm, Foggia, Italy
[5] Council Agr Res & Anal Agr Econ CREA, Ctr Cereal & Ind Crops CI, Bari, Italy
[6] Council Agr Res & Anal Agr Econ CREA, Ctr Agr & Environm, Bari, Italy
[7] Inst Tecnol Agr Castilla & Leon ITACyL, Valladolid, Spain
[8] Italian Space Agcy ASI, Rome, Italy
来源
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022) | 2022年
关键词
SAR; multi-frequency; agriculture; soil moisture; roughness; irrigation; SOIL-MOISTURE;
D O I
10.1109/IGARSS46834.2022.9884627
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The study aims to consolidate and validate a suite of Earth Observation algorithms of interest for applications in agriculture. The algorithms are at different levels of maturity. Still, they share the objective of contributing to sustainable water management and food security. They deal with monitoring the soil moisture, the vegetation water content, the extent of irrigated areas and the changes in the surface roughness of agricultural fields. The paper introduces the data sets, the algorithms and discusses some examples of initial results.
引用
收藏
页码:5176 / 5179
页数:4
相关论文
共 8 条
[1]   Sentinel-1 soil moisture at 1 km resolution: a validation study [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Lovergine, Francesco P. ;
Palmisano, Davide ;
Peng, Jian ;
Marzahn, Philip ;
Wegmuller, Urs ;
Cartus, Oliver ;
Dabrowska-Zielinska, Katarzyna ;
Musial, Jan P. ;
Davidson, Malcolm W. J. ;
Pauwels, Valentijn R. N. ;
Cosh, Michael H. ;
McNairn, Heather ;
Johnson, Joel T. ;
Walker, Jeffrey P. ;
Yueh, Simon H. ;
Entekhabi, Dara ;
Kerr, Yann H. ;
Jackson, Thomas J. .
REMOTE SENSING OF ENVIRONMENT, 2021, 263
[2]   Vegetation and soil moisture inversion from SAR closure phases: First experiments and results [J].
De Zan, Francesco ;
Gomba, Giorgio .
REMOTE SENSING OF ENVIRONMENT, 2018, 217 :562-572
[3]   A SAR Interferometric Model for Soil Moisture [J].
De Zan, Francesco ;
Parizzi, Alessandro ;
Prats-Iraola, Pau ;
Lopez-Dekker, Paco .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :418-425
[4]  
Palmisano D., 2021, GEOSCIENCE REM UNPUB
[5]   Sentinel-1 Sensitivity to Soil Moisture at High Incidence Angle and the Impact on Retrieval Over Seasonal Crops [J].
Palmisano, Davide ;
Mattia, Francesco ;
Balenzano, Anna ;
Satalino, Giuseppe ;
Pierdicca, Nazzareno ;
Guarnieri, Andrea Virgilio Monti .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7308-7321
[6]  
Puy A., 2021, NATURE COMMUN, V12, P1
[7]  
Satalino G., 2018, IGARSS 2018 2018 IEE
[8]   Soil Moisture Estimation Using Differential Radar Interferometry: Toward Separating Soil Moisture and Displacements [J].
Zwieback, Simon ;
Hensley, Scott ;
Hajnsek, Irena .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09) :5069-5083