Electrochemical properties of graphene flakes as an air cathode material for Li-O2 batteries in an ether-based electrolyte

被引:44
作者
Kim, Se Young [1 ]
Lee, Ho-Taek [2 ]
Kim, Kwang-Bum [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea
[2] Hyundai Motor Co, Uiwang Si 437815, Gyeonggi Do, South Korea
关键词
RECHARGEABLE LITHIUM BATTERIES; FUNCTIONALIZED GRAPHENE; MESOPOROUS CARBON; AMORPHOUS-CARBON; OXYGEN BATTERIES; RAMAN-SPECTRA; DISCHARGE; GRAPHITE; CATALYST; OXIDE;
D O I
10.1039/c3cp53534g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We employed graphene flakes as an air-cathode material for Li-O-2 batteries and investigated their electrochemical properties in the dimethyl ether electrolyte. Graphene flakes were prepared by microwave-assisted reduction of graphene oxide, and their electrochemical properties were compared with those of Ketjen Black and carbon nanotubes. The catalytic effect of the prepared graphene flake-air cathode was demonstrated using cyclic voltammetry and discharge-charge testing performed under a limited discharge capacity. The catalytic effect of graphene flakes was also supported by morphological and spectroscopic analysis of the discharge-charge products formed on the graphene surface. Scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy revealed that Li2O2, Li2O, and Li2CO3 were the main discharge products on all carbon-air cathode surfaces. Raman spectroscopy revealed that LiRCO3 was additionally formed on Ketjen Black and carbon nanotubes during the first discharge; however, its formation was not observed on the graphene flakes. The catalytic effect of the graphene flakes and the absence of LiRCO3 in the discharge product could explain the higher Coulombic efficiency in the discharge-charge tests.
引用
收藏
页码:20262 / 20271
页数:10
相关论文
共 60 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
[Anonymous], 1980, Infrared Characteristic Group Frequencies
[3]   Nano-structured gas diffusion electrode - A high power and stable cathode material for rechargeable Li-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2013, 235 :226-233
[4]   Quantitative Fourier Transform Infrared spectroscopic investigation of humic substance functional group composition [J].
Davis, WM ;
Erickson, CL ;
Johnston, CT ;
Delfino, JJ ;
Porter, JE .
CHEMOSPHERE, 1999, 38 (12) :2913-2928
[5]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[6]   An O2 cathode for rechargeable lithium batteries:: The effect of a catalyst [J].
Debart, Aurelie ;
Bao, Jianli ;
Armstrong, Graham ;
Bruce, Peter G. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :1177-1182
[7]   STRUCTURE OF GRAPHITE [J].
DONOHUE, J .
NATURE, 1975, 255 (5504) :172-172
[8]   Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide [J].
Fan, Zhuang-Jun ;
Kai, Wang ;
Yan, Jun ;
Wei, Tong ;
Zhi, Lin-Jie ;
Feng, Jing ;
Ren, Yue-ming ;
Song, Li-Ping ;
Wei, Fei .
ACS NANO, 2011, 5 (01) :191-198
[9]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[10]   Electron and Ion Transport In Li2O2 [J].
Gerbig, Oliver ;
Merkle, Rotraut ;
Maier, Joachim .
ADVANCED MATERIALS, 2013, 25 (22) :3129-3133