Logarithmic (sl)over-cap(2) CFT models from Nichols algebras: I

被引:17
作者
Semikhatov, A. M. [1 ]
Tipunin, I. Yu [1 ]
机构
[1] Lebedev Phys Inst, Moscow 119991, Russia
关键词
MINIMAL MODELS; BRAIDED GROUPS; FUSION; REPRESENTATIONS; EXTENSIONS; ROOT; CLASSIFICATION; MODULES; LIMIT;
D O I
10.1088/1751-8113/46/49/494011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct chiral algebras that centralize rank-2 Nichols algebras with at least one fermionic generator. This gives 'logarithmic' W-algebra extensions of a fractional-level (sl) over cap (2) algebra. We discuss crucial aspects of the emerging general relation between Nichols algebras and logarithmic conformal field theory (CFT) models: (i) the extra input, beyond the Nichols algebra proper, needed to uniquely specify a conformal model; (ii) a relation between the CFT counterparts of Nichols algebras connected by Weyl groupoid maps; and (iii) the common double bosonization U(X) of such Nichols algebras. For an extended chiral algebra, candidates for its simple modules that are counterparts of the U(X) simple modules are proposed, as a first step toward a functorial relation between U(X) and W-algebra representation categories.
引用
收藏
页数:53
相关论文
共 96 条
[1]   On the triplet vertex algebra W(p) [J].
Adamovic, Drazen ;
Milas, Antun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2664-2699
[2]   An explicit realization of logarithmic modules for the vertex operator algebra Wp,p′ [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
[3]   On W-algebra extensions of (2, p) minimal models: p > 3 [J].
Adamovic, Drazen ;
Milas, Antun .
JOURNAL OF ALGEBRA, 2011, 344 (01) :313-332
[4]   On W-Algebras Associated to (2, p) Minimal Models and Their Representations [J].
Adamovic, Drazen ;
Milas, Antun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (20) :3896-3934
[5]   Lattice construction of logarithmic modules for certain vertex algebras [J].
Adamovic, Drazen ;
Milas, Antun .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :535-561
[6]  
Andruskiewitsch N, 2002, MATH SCI R, V43, P1
[7]  
ANDRUSKIEWITSCH N, 2004, HOPF ALGEBRAS, P25
[8]  
Andruskiewitsch N., 1999, B ACAD NAC CIENC COR, V63, P45
[9]  
Andruskiewitsch N, 2010, AM J MATH, V132, P1493
[10]   Complete reducibility theorems for modules over pointed Hopf algebras [J].
Andruskiewitsch, Nicolas ;
Radford, David ;
Schneider, Hans-Juergen .
JOURNAL OF ALGEBRA, 2010, 324 (11) :2932-2970