EQUIVARIANT CHOW RING AND CHERN CLASSES OF WONDERFUL SYMMETRIC VARIETIES OF MINIMAL RANK

被引:17
作者
Brion, M. [1 ]
Joshua, R. [2 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38042 St Martin Dheres, France
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1007/s00031-008-9020-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the equivariant Chow ring of the wonderful compactification X of a symmetric space of minimal rank, via restriction to the associated toric variety Y. Also, we show that the restrictions to Y of the tangent bundle T-X and its logarithmic analogue S-X decompose into a direct sum of line bundles. This yields closed formulas for the equivariant Chern classes of T-X and S-X, and, in turn, for the Chern classes of reductive groups considered by Kiritchenko.
引用
收藏
页码:471 / 493
页数:23
相关论文
共 19 条
[1]  
[Anonymous], 1990, MOTS
[2]  
Bien F, 1996, COMPOS MATH, V104, P1
[3]   The virtual Poincare polynomials of homogeneous spaces [J].
Brion, M ;
Peyre, E .
COMPOSITIO MATHEMATICA, 2002, 134 (03) :319-335
[4]   The behaviour at infinity of the Bruhat decomposition [J].
Brion, M .
COMMENTARII MATHEMATICI HELVETICI, 1998, 73 (01) :137-174
[5]  
BRION M, 1997, J TRANSFORMATION GRO, V2, P225
[6]   Compactification of symmetric varieties [J].
De Concini, C ;
Springer, TA .
TRANSFORMATION GROUPS, 1999, 4 (2-3) :273-300
[7]  
De Concini C., 1985, ADV STUD PURE MATH, V6, P481
[8]  
DECONCINI C, 1983, LECT NOTES MATH, V996, P1
[9]   A CHARACTER FORMULA FOR THE REPRESENTATION OF A WEYL GROUP IN THE COHOMOLOGY OF THE ASSOCIATED TORIC VARIETY [J].
DOLGACHEV, I ;
LUNTS, V .
JOURNAL OF ALGEBRA, 1994, 168 (03) :741-772
[10]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214