Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species

被引:102
作者
Kastman, Erik K. [1 ]
Kamelamela, Noelani [1 ]
Norville, Josh W. [1 ]
Cosetta, Casey M. [1 ]
Dutton, Rachel J. [2 ]
Wolfe, Benjamin E. [1 ]
机构
[1] Tufts Univ, Dept Biol, Medford, MA 02155 USA
[2] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
COAGULASE-NEGATIVE STAPHYLOCOCCI; PHYLOGENETIC LIMITING SIMILARITY; PSEUDOMONAS-PUTIDA KT2440; URINARY-TRACT-INFECTIONS; STREPTOCOCCUS-SANGUINIS; MICROBIAL-POPULATIONS; BACTERIAL; COMPETITION; MECHANISMS; AERUGINOSA;
D O I
10.1128/mBio.01157-16
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. IMPORTANCE Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative Staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems.
引用
收藏
页数:13
相关论文
共 88 条
[1]   Fine-scale phylogenetic architecture of a complex bacterial community [J].
Acinas, SG ;
Klepac-Ceraj, V ;
Hunt, DE ;
Pharino, C ;
Ceraj, I ;
Distel, DL ;
Polz, MF .
NATURE, 2004, 430 (6999) :551-554
[2]   The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses [J].
Addis, E ;
Fleet, GH ;
Cox, JM ;
Kolak, D ;
Leung, T .
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2001, 69 (1-2) :25-36
[3]  
[Anonymous], CHEESE CHEM PHYS MIC
[4]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[5]   Host-bacterial mutualism in the human intestine [J].
Bäckhed, F ;
Ley, RE ;
Sonnenburg, JL ;
Peterson, DA ;
Gordon, JI .
SCIENCE, 2005, 307 (5717) :1915-1920
[6]   Using network analysis to explore co-occurrence patterns in soil microbial communities [J].
Barberan, Albert ;
Bates, Scott T. ;
Casamayor, Emilio O. ;
Fierer, Noah .
ISME JOURNAL, 2012, 6 (02) :343-351
[7]   Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special emphasis on coagulase-negative staphylococci [J].
Braem, G. ;
De Vliegher, S. ;
Verbist, B. ;
Piessens, V. ;
Van Coillie, E. ;
De Vuyst, L. ;
Leroy, F. .
JOURNAL OF DAIRY SCIENCE, 2013, 96 (03) :1499-1510
[8]   TRANSFERRIN AND LACTOFERRIN UNDERGO PROTEOLYTIC CLEAVAGE IN THE PSEUDOMONAS AERUGINOSA-INFECTED LUNGS OF PATIENTS WITH CYSTIC-FIBROSIS [J].
BRITIGAN, BE ;
HAYEK, MB ;
DOEBBELING, BN ;
FICK, RB .
INFECTION AND IMMUNITY, 1993, 61 (12) :5049-5055
[9]   Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity [J].
Bryant, Jessica A. ;
Lamanna, Christine ;
Morlon, Helene ;
Kerkhoff, Andrew J. ;
Enquist, Brian J. ;
Green, Jessica L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 :11505-11511
[10]   Interactions in multispecies biofilms: do they actually matter? [J].
Burmolle, Mette ;
Ren, Dawei ;
Bjarnsholt, Thomas ;
Sorensen, Soren J. .
TRENDS IN MICROBIOLOGY, 2014, 22 (02) :84-91