Chromatin Loop Formation in the β-Globin Locus and Its Role in Globin Gene Transcription

被引:49
作者
Kim, AeRi [2 ]
Dean, Ann [1 ]
机构
[1] NIDDK, Lab Cellular & Dev Biol, NIH, Bethesda, MD 20892 USA
[2] Pusan Natl Univ, Dept Mol Biol, Coll Nat Sci, Pusan 609735, South Korea
关键词
beta-globin locus; chromatin loops; LCR; transcription; ERYTHROID-DIFFERENTIATION; CONTROL REGION; CHROMOSOME CONFORMATION; ACTIVATION; EXPRESSION; COMPLEXES; COHESIN; GATA-1; CELLS; CTCF;
D O I
10.1007/s10059-012-0048-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian beta-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the beta-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 39 条
[1]   Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics [J].
Brand, M ;
Ranish, JA ;
Kummer, NT ;
Hamilton, J ;
Igarashi, K ;
Francastel, C ;
Chi, TH ;
Crabtree, GR ;
Aebersold, R ;
Groudine, M .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (01) :73-80
[2]   A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development [J].
Bultman, SJ ;
Gebuhr, TC ;
Magnuson, T .
GENES & DEVELOPMENT, 2005, 19 (23) :2849-2861
[3]   Chromatin Insulators: Regulatory Mechanisms and Epigenetic Inheritance [J].
Bushey, Ashley M. ;
Dorman, Elizabeth R. ;
Corces, Victor G. .
MOLECULAR CELL, 2008, 32 (01) :1-9
[4]   Transcriptional regulation of erythropoiesis: an affair involving multiple partners [J].
Cantor, AB ;
Orkin, SH .
ONCOGENE, 2002, 21 (21) :3368-3376
[5]   Long-range chromatin regulatory interactions in vivo [J].
Carter, D ;
Chakalova, L ;
Osborne, CS ;
Dai, YF ;
Fraser, P .
NATURE GENETICS, 2002, 32 (04) :623-626
[6]   Cohesin Mediates Chromatin Interactions That Regulate Mammalian β-globin Expression [J].
Chien, Richard ;
Zeng, Weihua ;
Kawauchi, Shimako ;
Bender, M. A. ;
Santos, Rosaysela ;
Gregson, Heather C. ;
Schmiesing, John A. ;
Newkirk, Daniel A. ;
Kong, Xiangduo ;
Ball, Alexander R., Jr. ;
Calof, Anne L. ;
Lander, Arthur D. ;
Groudine, Mark T. ;
Yokomori, Kyoko .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (20) :17870-17878
[7]   On a chromosome far, far away: LCRs and gene expression [J].
Dean, A .
TRENDS IN GENETICS, 2006, 22 (01) :38-45
[8]   Capturing chromosome conformation [J].
Dekker, J ;
Rippe, K ;
Dekker, M ;
Kleckner, N .
SCIENCE, 2002, 295 (5558) :1306-1311
[9]   Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements [J].
Dostie, Josee ;
Richmond, Todd A. ;
Arnaout, Ramy A. ;
Selzer, Rebecca R. ;
Lee, William L. ;
Honan, Tracey A. ;
Rubio, Eric D. ;
Krumm, Anton ;
Lamb, Justin ;
Nusbaum, Chad ;
Green, Roland D. ;
Dekker, Job .
GENOME RESEARCH, 2006, 16 (10) :1299-1309
[10]   The active spatial organization of the β-globin locus requires the transcription factor EKLF [J].
Drissen, R ;
Palstra, RJ ;
Gillemans, N ;
Splinter, E ;
Grosveld, F ;
Philipsen, S ;
de Laat, W .
GENES & DEVELOPMENT, 2004, 18 (20) :2485-2490