Spin-valve Josephson junctions for cryogenic memory

被引:41
|
作者
Niedzielski, Bethany M. [1 ,2 ]
Bertus, T. J. [1 ]
Glick, Joseph A. [1 ]
Loloee, R. [1 ]
Pratt, W. P., Jr. [1 ]
Birge, Norman O. [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] MIT, Lincoln Labs, 244 Wood St, Lexington, MA 02421 USA
关键词
TUNNEL-JUNCTIONS; EXCHANGE FIELD; FERROMAGNET;
D O I
10.1103/PhysRevB.97.024517
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Josephson junctions containing two ferromagnetic layers are being considered for use in cryogenicmemory. Our group recently demonstrated that the ground-state phase difference across such a junction with carefully chosen layer thicknesses could be controllably toggled between zero and p by switching the relative magnetization directions of the two layers between the antiparallel and parallel configurations. However, several technological issues must be addressed before those junctions can be used in a large-scale memory. Many of these issues can be more easily studied in single junctions, rather than in the superconducting quantum interference device (SQUID) used for phase-sensitive measurements. In this work, we report a comprehensive study of spin-valve junctions containing a Ni layer with a fixed thickness of 2.0 nm and a NiFe layer of thickness varying between 1.1 and 1.8 nm in steps of 0.1 nm. We extract the field shift of the Fraunhofer patterns and the critical currents of the junctions in the parallel and antiparallel magnetic states, as well as the switching fields of both magnetic layers. We also report a partial study of similar junctions containing a slightly thinner Ni layer of 1.6 nm and the same range of NiFe thicknesses. These results represent the first step toward mapping out a "phase diagram" for phase-controllable spin-valve Josephson junctions as a function of the two magnetic layer thicknesses.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Influence of magnetic scattering on superconductivity of ferromagnet/superconductor/ferromagnet spin-valve
    Peng, Lin
    Cai, Chuanbing
    Chen, Changzhao
    Liu, Zhiyong
    Gao, Bo
    PHYSICS LETTERS A, 2009, 373 (26) : 2273 - 2276
  • [22] Thermal-magnetic-electric oscillator based on spin-valve effect
    Kadigrobov, A. M.
    Andersson, S.
    Park, Hee Chul
    Radic, D.
    Shekhter, R. I.
    Jonson, M.
    Korenivski, V.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
  • [23] Magnetoelectric effects in Josephson junctions
    Bobkova, I., V
    Bobkov, A. M.
    Silaev, M. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (35)
  • [24] Remotely induced magnetism in a normal metal using a superconducting spin-valve
    Flokstra, M. G.
    Satchell, N.
    Kim, J.
    Burnell, G.
    Curran, P. J.
    Bending, S. J.
    Cooper, J. F. K.
    Kinane, C. J.
    Langridge, S.
    Isidori, A.
    Pugach, N.
    Eschrig, M.
    Luetkens, H.
    Suter, A.
    Prokscha, T.
    Lee, S. L.
    NATURE PHYSICS, 2016, 12 (01) : 57 - U87
  • [25] Spin-transfer-torque switching in a spin-valve nanopillar with a conically magnetized free layer
    Matsumoto, Rie
    Arai, Hiroko
    Yuasa, Shinji
    Imamura, Hiroshi
    APPLIED PHYSICS EXPRESS, 2015, 8 (06)
  • [26] Spin-Transfer Torque Switching in Nanopillar Superconducting-Magnetic Hybrid Josephson Junctions
    Baek, Burm
    Rippard, William H.
    Pufall, Matthew R.
    Benz, Samuel P.
    Russek, Stephen E.
    Rogalla, Horst
    Dresselhaus, Paul D.
    PHYSICAL REVIEW APPLIED, 2015, 3 (01):
  • [27] Spin-triplet supercurrent in Co-based Josephson junctions
    Khasawneh, Mazin A.
    Khaire, Trupti S.
    Klose, Carolin
    Pratt, William P., Jr.
    Birge, Norman O.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2011, 24 (02)
  • [28] Spin-controlled coexistence of 0 and π states in SFSFS Josephson junctions
    Alidoust, Mohammad
    Halterman, Klaus
    PHYSICAL REVIEW B, 2014, 89 (19)
  • [29] Generation of Large Spin Accumulation in S/N/S Josephson Junctions
    Wakamura, Taro
    Ohnishi, Kohei
    Niimi, Yasuhiro
    Otani, YoshiChika
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [30] Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures
    Flokstra, M. G.
    Cunningham, T. C.
    Kim, J.
    Satchell, N.
    Burnell, G.
    Curran, P. J.
    Bending, S. J.
    Kinane, C. J.
    Cooper, J. F. K.
    Langridge, S.
    Isidori, A.
    Pugach, N.
    Eschrig, M.
    Lee, S. L.
    PHYSICAL REVIEW B, 2015, 91 (06)