A quantum light-emitting diode for the standard telecom window around 1,550 nm

被引:132
作者
Mueller, T. [1 ]
Skiba-Szymanska, J. [1 ]
Krysa, A. B. [2 ]
Huwer, J. [1 ]
Felle, M. [1 ,3 ]
Anderson, M. [1 ,4 ]
Stevenson, R. M. [1 ]
Heffernan, J. [5 ]
Ritchie, D. A. [4 ]
Shields, A. J. [1 ]
机构
[1] Toshiba Res Europe Ltd, 208 Sci Pk,Milton Rd, Cambridge CB4 0GZ, England
[2] Univ Sheffield, EPSRC Natl Epitaxy Facil, Sheffield S1 3JD, S Yorkshire, England
[3] Univ Cambridge, Engn Dept, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[4] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[5] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
KEY DISTRIBUTION; SINGLE; DOTS; NETWORK;
D O I
10.1038/s41467-018-03251-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 +/- 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
Bennett AJ, 2016, NAT NANOTECHNOL, V11, P857, DOI [10.1038/nnano.2016.113, 10.1038/NNANO.2016.113]
[2]   Regulated and entangled photons from a single quantum dot [J].
Benson, O ;
Santori, C ;
Pelton, M ;
Yamamoto, Y .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2513-2516
[3]   Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots [J].
Benyoucef, M. ;
Yacob, M. ;
Reithmaier, J. P. ;
Kettler, J. ;
Michler, P. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[4]   Acoustic phonon broadening mechanism in single quantum dot emission [J].
Besombes, L ;
Kheng, K ;
Marsal, L ;
Mariette, H .
PHYSICAL REVIEW B, 2001, 63 (15)
[5]  
Brassard G., 1994, LECT NOTES COMPUTER, V765, P410, DOI [10.1007/3-540-48285-7_35, DOI 10.1007/3-540-48285-7_35]
[6]   Optical characteristics of single InAs/InGaAsP/InP(100) quantum dots emitting at 1.55 μm [J].
Cade, N. I. ;
Gotoh, H. ;
Kamada, H. ;
Nakano, H. ;
Anantathanasarn, S. ;
Notzel, R. .
APPLIED PHYSICS LETTERS, 2006, 89 (18)
[7]   Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate [J].
Chau, HF .
PHYSICAL REVIEW A, 2002, 66 (06) :4
[8]   Distributed quantum computation over noisy channels [J].
Cirac, JI ;
Ekert, AK ;
Huelga, SF ;
Macchiavello, C .
PHYSICAL REVIEW A, 1999, 59 (06) :4249-4254
[9]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&
[10]   Deterministic emitter-cavity coupling using a single-site controlled quantum dot [J].
Dalacu, Dan ;
Mnaymneh, Khaled ;
Sazonova, Vera ;
Poole, Philip J. ;
Aers, Geof C. ;
Lapointe, Jean ;
Cheriton, Ross ;
SpringThorpe, Anthony J. ;
Williams, Robin .
PHYSICAL REVIEW B, 2010, 82 (03)