Improved bandwidth and quantum efficiency in silicon photodiodes using photon-manipulating micro/nanostructures operating in the range of 700-1060 nm

被引:2
作者
Cansizoglu, Hilal [1 ]
Gao, Yang [1 ]
Ghandiparsi, Soroush [1 ]
Kaya, Ahmet [1 ]
Perez, Cesar Bartolo [1 ]
Mayet, Ahmed [1 ]
Devine, Ekaterina Ponizovskaya [3 ]
Cansizoglu, Mehmet F. [1 ,4 ]
Yamada, Toshishige [2 ,3 ]
Elrefaie, Aly F. [1 ,3 ]
Wang, Shih-Yuan [3 ]
Islam, M. Saif [1 ]
机构
[1] Univ Calif Davis, Elect & Comp Engn, Davis, CA 95618 USA
[2] Univ Calif Santa Cruz, Baskin Sch Engn, Elect Engn, Santa Cruz, CA 95064 USA
[3] W&WSens Devices Inc, 4546 El Camino,Suite 215, Los Altos, CA USA
[4] UT Southwestern Med Ctr, Green Ctr Syst Biol, Dallas, TX 75390 USA
来源
LOW-DIMENSIONAL MATERIALS AND DEVICES 2017 | 2017年 / 10349卷
关键词
nanoscale holes; Si photodiodes; light trapping structures; high efficiency and bandwidth;
D O I
10.1117/12.2276611
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructures allow broad spectrum and near-unity optical absorption and contributed to high performance low-cost Si photovoltaic devices. However, the efficiency is only a few percent higher than a conventional Si solar cell with thicker absorption layers. For high speed surface illuminated photodiodes, the thickness of the absorption layer is critical for short transit time and RC time. Recently a CMOS-compatible micro/nanohole silicon (Si) photodiode (PD) with more than 20 Gb/s data rate and with 52 % quantum efficiency (QE) at 850 nm was demonstrated. The achieved QE is over 400% higher than a similar Si PD with the same thickness but without absorption enhancement microstructure holes. The micro/nanoholes increases the QE by photon trapping, slow wave effects and generate a collective assemble of modes that radiate laterally, resulting in absorption enhancement and therefore increase in QE. Such Si PDs can be further designed to enhance the bandwidth (BW) of the PDs by reducing the device capacitance with etched holes in the pin junction. Here we present the BW and QE of Si PDs achievable with micro/nanoholes based on a combination of empirical evidence and device modeling. Higher than 50 Gb/s data rate with greater than 40% QE at 850 nm is conceivable in transceivers designed with such Si PDs that are integrated with photon trapping micro and nanostructures. By monolithic integration with CMOS/BiCMOS integrated circuits such as transimpedance amplifiers, equalizers, limiting amplifiers and other application specific integrated circuits (ASIC), the data rate can be increased to more than 50 Gb/s.
引用
收藏
页数:5
相关论文
共 9 条
[1]  
Alexander S. B, 1997, SPIE
[2]  
Dupuis N., EXPLORING LIMITS HIG
[3]   Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes [J].
Fountaine, Katherine T. ;
Whitney, William S. ;
Atwater, Harry A. .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (15)
[4]  
Gao Y, 2017, NAT PHOTONICS, V11, P301, DOI [10.1038/nphoton.2017.37, 10.1038/NPHOTON.2017.37]
[5]   A roadmap for nanophotonics [J].
Kirchain, Randolph ;
Kimerling, Lionel .
NATURE PHOTONICS, 2007, 1 (06) :303-305
[6]   High efficiency silicon solar cell based on asymmetric nanowire [J].
Ko, Myung-Dong ;
Rim, Taiuk ;
Kim, Kihyun ;
Meyyappan, M. ;
Baek, Chang-Ki .
SCIENTIFIC REPORTS, 2015, 5
[7]  
Orcutt J., MONOLITHIC SILICON P
[8]   Single-chip microprocessor that communicates directly using light [J].
Sun, Chen ;
Wade, Mark T. ;
Lee, Yunsup ;
Orcutt, Jason S. ;
Alloatti, Luca ;
Georgas, Michael S. ;
Waterman, Andrew S. ;
Shainline, Jeffrey M. ;
Avizienis, Rimas R. ;
Lin, Sen ;
Moss, Benjamin R. ;
Kumar, Rajesh ;
Pavanello, Fabio ;
Atabaki, Amir H. ;
Cook, Henry M. ;
Ou, Albert J. ;
Leu, Jonathan C. ;
Chen, Yu-Hsin ;
Asanovic, Krste ;
Ram, Rajeev J. ;
Popovic, Milos A. ;
Stojanovic, Vladimir M. .
NATURE, 2015, 528 (7583) :534-+
[9]   VCSEL-Based Interconnects for Current and Future Data Centers [J].
Tatum, Jim A. ;
Gazula, Deepa ;
Graham, Luke A. ;
Guenter, James K. ;
Johnson, Ralph H. ;
King, Jonathan ;
Kocot, Chris ;
Landry, Gary D. ;
Lyubomirsky, Ilya ;
MacInnes, Andrew N. ;
Shaw, Edward M. ;
Balemarthy, Kasyapa ;
Shubochkin, Roman ;
Vaidya, Durgesh ;
Yan, Man ;
Tang, Frederick .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (04) :727-732