A FPGA-based Hardware Accelerator for Multiple Convolutional Neural Networks

被引:0
|
作者
Yao, Yuchen [1 ]
Duan, Qinghua [2 ]
Zhang, Zhiqian
Gao, Jiabao
Wang, Jian
Yang, Meng
Tao, Xinxuan [1 ]
Lai, Jinmei [1 ]
机构
[1] Fudan Univ, State Key Lab ASIC & Syst, Shanghai 201203, Peoples R China
[2] Chengdu Sino Microelect Technol Co Ltd, Chengdu, Sichuan, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolution Neural Network (CNN) has been widely used in many computer vision tasks. Due to the rapid growth of CNN, the accelerator that only supports single network could not meet the requirement of application. Based on the work of ZynqNet, which is a dedicated CNN accelerator, in this paper, we propose a FPGA-based CNN accelerator which supports the acceleration of multiple networks, and present an automatic mapping flow in which users only need to provide network description files and test image to accelerate a specified network. And we adopt a dynamic fixed-point quantization strategy to reduce resource consumption. Experimental results shows the performance density and power efficiency of our design can reach 0.054GOPS/DSP and 5.24GOPS/W respectively when accelerating SqueezeNet.
引用
收藏
页码:1075 / 1077
页数:3
相关论文
共 50 条
  • [31] FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network
    Nakahara, Hiroki
    Sada, Youki
    Shimoda, Masayuki
    Sayama, Kouki
    Jinguji, Akira
    Sato, Shimpei
    2019 29TH INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL), 2019, : 180 - 186
  • [32] An Efficient FPGA-Based Dilated and Transposed Convolutional Neural Network Accelerator
    Wu, Tsung-Hsi
    Shu, Chang
    Liu, Tsung-Te
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, 71 (11) : 5178 - 5186
  • [33] An FPGA-Based Computation-Efficient Convolutional Neural Network Accelerator
    Archana, V. S.
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [34] Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded Systems
    Zhao, Jingyuan
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Mingyang
    Xu, Mingdong
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA 2019), 2019, : 36 - 40
  • [35] An FPGA-based Hardware Accelerator for Iris Segmentation
    Avey, Joe
    Jones, Phillip
    Zambreno, Joseph
    2018 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2018,
  • [36] FPGA-Based Hardware Accelerator for Matrix Inversion
    Kokkiligadda V.S.K.
    Naikoti V.
    Patkotwar G.S.
    Sabat S.L.
    Peesapati R.
    SN Computer Science, 4 (2)
  • [37] FPGA-Based Reconfigurable Convolutional Neural Network Accelerator Using Sparse and Convolutional Optimization
    Gowda, Kavitha Malali Vishveshwarappa
    Madhavan, Sowmya
    Rinaldi, Stefano
    Divakarachari, Parameshachari Bidare
    Atmakur, Anitha
    ELECTRONICS, 2022, 11 (10)
  • [38] Customizable FPGA-based Accelerator for Binarized Graph Neural Networks
    Wang, Ziwei
    Que, Zhiqiang
    Luk, Wayne
    Fan, Hongxiang
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1968 - 1972
  • [39] Optimizing Bayesian Recurrent Neural Networks on an FPGA-based Accelerator
    Ferianc, Martin
    Que, Zhiqiang
    Fan, Hongxiang
    Luk, Wayne
    Rodrigues, Miguel
    2021 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT), 2021, : 19 - 28
  • [40] Customizable FPGA-based Accelerator for Binarized Graph Neural Networks
    Wang, Ziwei
    Que, Zhiqiang
    Luk, Wayne
    Fan, Hongxiang
    Proceedings - IEEE International Symposium on Circuits and Systems, 2022, 2022-May : 1968 - 1972