Structure and propagation of triple flames in partially premixed hydrogen-air mixtures

被引:71
|
作者
Im, IG [1 ]
Chen, JH [1 ]
机构
[1] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA
关键词
D O I
10.1016/s0010-2180(99)00073-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The characteristics of triple flames in a hydrogen-air mixing layer are studied using direct numerical simulation with detailed chemistry. Triple flames are initiated by imposing a temperature ignition source in the center of a scalar mixing layer of nonuniform thickness, thereby forming a pair of freely propagating triple flames. Two different Fuel streams are studied: pure hydrogen and hydrogen diluted with nitrogen. During the ignition stage, the initial ignition runaway is followed by a secondary peak as the ignition kernel transitions to a triple flame, consistent with previous observations. For both diluted and undiluted cases, the triple flame structure exhibits more similarity with a diffusion flame than with a premixed flame, such that the triple point, defined as the location of maximum heat release, is always in the proximity of the stoichiometric mixture fraction line. Similar to a previous study of methanol-air triple flames, the enhancement in the stabilization speed is attributed mainly to how divergence, and its value is proportional to the square root of the density ratio across the flame. In the undiluted case, however, the asymmetric flame structure results in distinct locations where the stabilization speed and the displacement speed are maximum. The effect of unsteady strain rate is also studied by imposing a pair of vortices on the propagating triple flames. The negative strain rate results in the: collapse of the premixed flame branches onto the diffusion flame, forming an edge flame structure. Excessive compressive strain and curvature at the triple flame tip leads to a negative displacement speed. A mixture fraction/temperature parameterization is shown to be useful in representing the structure of a triple flame subjected to unsteady strain rate, (C) 1999 by The Combustion Institute.
引用
收藏
页码:436 / 454
页数:19
相关论文
共 50 条
  • [41] Stochastic characterisation of unstable lean hydrogen-air annular premixed flames
    da Silva, Luis Fernando Figueira
    COMBUSTION THEORY AND MODELLING, 2024, 28 (03) : 317 - 343
  • [42] Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane
    Hynes, RG
    Mackie, JC
    Masri, AR
    COMBUSTION AND FLAME, 1998, 113 (04) : 554 - 565
  • [43] Interaction of Flame Flashback Mechanisms in Premixed Hydrogen-Air Swirl Flames
    Sattelmayer, Thomas
    Mayer, Christoph
    Sangl, Janine
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2016, 138 (01):
  • [44] Simulation Study on the Explosion Characteristics of Premixed Hydrogen-air Mixtures
    Xiong, Yanyi
    Ma, Yiwei
    Zhao, Huiping
    Hu, Yang
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING, PTS 1-5, 2020, 546
  • [45] Structure and extinction of heptane/air partially premixed flames
    Xue, HS
    Aggarwal, SK
    AIAA JOURNAL, 2002, 40 (11) : 2289 - 2297
  • [46] Flame propagation of premixed hydrogen-air explosions in bend pipes
    Mei, Yuan
    Shuai, Jian
    Zhou, Ning
    Ren, Wei
    Ren, Fei
    Journal of Loss Prevention in the Process Industries, 2022, 77
  • [47] Flame propagation of premixed hydrogen-air explosions in bend pipes
    Mei, Yuan
    Shuai, Jian
    Zhou, Ning
    Ren, Wei
    Ren, Fei
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 77
  • [48] Structure of n-heptane/air triple flames in partially-premixed mixing layers
    Prager, J.
    Najm, H. N.
    Valorani, M.
    Goussis, D. A.
    COMBUSTION AND FLAME, 2011, 158 (11) : 2128 - 2144
  • [49] Effect of confinement on the propagation patterns of lean hydrogen-air flames
    Dejoan, Anne
    Zhou, Zhenghong
    Fernandez-Galisteo, Daniel
    Ronney, Paul D.
    Kurdyumov, Vadim N.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [50] Effect of hydrogen addition on the combustion characteristics of premixed biogas/hydrogen-air mixtures
    Benaissa, Sabrina
    Adouane, Belkacem
    Ali, S. M.
    Mohammad, Akram
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (35) : 18661 - 18677