CHOMP: Covariant Hamiltonian optimization for motion planning

被引:453
|
作者
Zucker, Matt [1 ]
Ratliff, Nathan [2 ]
Dragan, Anca D. [3 ]
Pivtoraiko, Mihail [4 ]
Klingensmith, Matthew [3 ]
Dellin, Christopher M. [3 ]
Bagnell, J. Andrew [3 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Swarthmore Coll, Dept Engn, Swarthmore, PA 19081 USA
[2] Google Inc, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH | 2013年 / 32卷 / 9-10期
关键词
Motion planning; constrained optimization; distance fields; DISTANCE; SEARCH; MANIPULATORS; ALGORITHMS;
D O I
10.1177/0278364913488805
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
引用
收藏
页码:1164 / 1193
页数:30
相关论文
共 50 条
  • [41] REMARKS ON THE COVARIANT HAMILTONIAN FORMALISM FOR VECTORIAL FIELDS
    LIOTTA, RS
    NUOVO CIMENTO, 1959, 14 (02): : 442 - 447
  • [42] JAYNES-CUMMINGS HAMILTONIAN IN A COVARIANT GAUGE
    BAXTER, C
    PHYSICAL REVIEW A, 1991, 44 (05): : 3179 - 3187
  • [43] Covariant description of parametrized nonrelativistic Hamiltonian systems
    Mondragón, M
    Montesinos, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 (15): : 2473 - 2493
  • [44] COVARIANT HAMILTONIAN FORMULATION OF ELECTRODYNAMICS IN COULOMB GAUGE
    POULAIN, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1975, 83 (01) : 193 - 202
  • [45] Trajectory Optimization With Particle Swarm Optimization for Manipulator Motion Planning
    Kim, Jeong-Jung
    Lee, Ju-Jang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2015, 11 (03) : 620 - 631
  • [46] Planning motion of manipulators with local manipulability optimization
    Dulȩbe, Ignacy
    Karcz-Dulȩba, Iwona
    Lecture Notes in Control and Information Sciences, 2012, 422 : 365 - 375
  • [47] Optimization-based motion planning for trawling
    Haugen, Joakim
    Imsland, Lars
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2019, 24 (03) : 984 - 995
  • [48] STOMP: Stochastic Trajectory Optimization for Motion Planning
    Kalakrishnan, Mrinal
    Chitta, Sachin
    Theodorou, Evangelos
    Pastor, Peter
    Schaal, Stefan
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [49] Efficient Trajectory Optimization for Robot Motion Planning
    Zhao, Yu
    Lin, Hsien-Chung
    Tomizuka, Masayoshi
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 260 - 265
  • [50] Motion planning around obstacles with convex optimization
    Marcucci, Tobia
    Petersen, Mark
    von Wrangel, David
    Tedrake, Russ
    SCIENCE ROBOTICS, 2023, 8 (84)