CHOMP: Covariant Hamiltonian optimization for motion planning

被引:453
|
作者
Zucker, Matt [1 ]
Ratliff, Nathan [2 ]
Dragan, Anca D. [3 ]
Pivtoraiko, Mihail [4 ]
Klingensmith, Matthew [3 ]
Dellin, Christopher M. [3 ]
Bagnell, J. Andrew [3 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Swarthmore Coll, Dept Engn, Swarthmore, PA 19081 USA
[2] Google Inc, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH | 2013年 / 32卷 / 9-10期
关键词
Motion planning; constrained optimization; distance fields; DISTANCE; SEARCH; MANIPULATORS; ALGORITHMS;
D O I
10.1177/0278364913488805
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
引用
收藏
页码:1164 / 1193
页数:30
相关论文
共 50 条
  • [31] Covariant Hamiltonian formalism for F(R)-gravity
    J. Klusoň
    B. Matouš
    General Relativity and Gravitation, 2021, 53
  • [32] COVARIANT HAMILTONIAN-FORMULATION OF THE MASSIVE SUPERPARTICLE
    LIN, QG
    NI, GJ
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1989, 15 (08) : 1163 - 1173
  • [33] Covariant description of Hamiltonian form for field dynamics
    Ozaki, H
    ANNALS OF PHYSICS, 2005, 319 (02) : 364 - 398
  • [34] Conformal killing tensors and covariant Hamiltonian dynamics
    Cariglia, M.
    Gibbons, G. W.
    van Holten, J. -W.
    Horvathy, P. A.
    Zhang, P. -M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [35] The Gauge Principle in Covariant Hamiltonian Field Theory
    Reichau, Hermine
    Struckmeier, Juergen
    Nuclear Physics: Present and Future, 2015, : 275 - 286
  • [36] Covariant Hamiltonian tetrad approach to numerical relativity
    Hamilton, Andrew J. S.
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [37] On Covariant and Canonical Hamiltonian Formalisms for Gauge Theories
    Corichi, Alejandro
    Reyes, Juan D.
    Vukasinac, Tatjana
    UNIVERSE, 2024, 10 (02)
  • [38] Covariant Hamiltonian formalism for F(R)-gravity
    Kluson, J.
    Matous, B.
    GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (11)
  • [39] Generalizations of the Dirac equation in covariant and Hamiltonian form
    Loide, RK
    Ots, I
    Saar, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10): : 2031 - 2039
  • [40] A manifestly covariant Hamiltonian formalism for dynamical geometry
    Nester, James M.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2008, (172): : 30 - 39