CHOMP: Covariant Hamiltonian optimization for motion planning

被引:453
|
作者
Zucker, Matt [1 ]
Ratliff, Nathan [2 ]
Dragan, Anca D. [3 ]
Pivtoraiko, Mihail [4 ]
Klingensmith, Matthew [3 ]
Dellin, Christopher M. [3 ]
Bagnell, J. Andrew [3 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Swarthmore Coll, Dept Engn, Swarthmore, PA 19081 USA
[2] Google Inc, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH | 2013年 / 32卷 / 9-10期
关键词
Motion planning; constrained optimization; distance fields; DISTANCE; SEARCH; MANIPULATORS; ALGORITHMS;
D O I
10.1177/0278364913488805
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
引用
收藏
页码:1164 / 1193
页数:30
相关论文
共 50 条
  • [21] Weyl gravity in covariant hamiltonian formalism
    Kluson, J.
    Matous, B.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (24)
  • [22] COVARIANT HAMILTONIAN EQUATIONS IN GENERAL RELATIVITY
    ROCHE, C
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1969, 10 (03): : 271 - &
  • [23] Lorentz-Covariant Hamiltonian Formalism
    A. Bérard
    H. Mohrbach
    P. Gosselin
    International Journal of Theoretical Physics, 2000, 39 : 1055 - 1068
  • [24] Lorentz-Covariant Hamiltonian formalism
    Bérard, A
    Mohrbach, H
    Gosselin, P
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 1055 - 1068
  • [25] Guided Stochastic Optimization for Motion Planning
    Magyar, Bence
    Tsiogkas, Nikolaos
    Brito, Bruno
    Patel, Mayank
    Lane, David
    Wang, Sen
    FRONTIERS IN ROBOTICS AND AI, 2019, 6
  • [26] Multimodal trajectory optimization for motion planning
    Osa, Takayuki
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (08): : 983 - 1001
  • [27] Trajectory Optimization by Particle Swarm Optimization in Motion Planning
    Kim, Jeong-Jung
    Lee, Ju-Jang
    PROGRESS IN SYSTEMS ENGINEERING, 2015, 366 : 299 - 305
  • [28] Mitigating Motion Sickness With Optimization-Based Motion Planning
    Zheng, Yanggu
    Shyrokau, Barys
    Keviczky, Tamas
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2553 - 2563
  • [29] Mitigating Motion Sickness with Optimization-Based Motion Planning
    Zheng, Yanggu
    Shyrokau, Barys
    Keviczky, Tamas
    IEEE Transactions on Intelligent Vehicles, 2024, 9 (01): : 2553 - 2563
  • [30] Improved Optimization of Motion Primitives for Motion Planning in State Lattices
    Bergman, Kristoffer
    Ljungqvist, Oskar
    Axehill, Daniel
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2307 - 2314