CHOMP: Covariant Hamiltonian optimization for motion planning

被引:475
作者
Zucker, Matt [1 ]
Ratliff, Nathan [2 ]
Dragan, Anca D. [3 ]
Pivtoraiko, Mihail [4 ]
Klingensmith, Matthew [3 ]
Dellin, Christopher M. [3 ]
Bagnell, J. Andrew [3 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Swarthmore Coll, Dept Engn, Swarthmore, PA 19081 USA
[2] Google Inc, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
关键词
Motion planning; constrained optimization; distance fields; DISTANCE; SEARCH; MANIPULATORS; ALGORITHMS;
D O I
10.1177/0278364913488805
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
引用
收藏
页码:1164 / 1193
页数:30
相关论文
共 84 条
[31]  
Dragan A, 2011, P 2011 IEEE INT C RO
[32]  
Eisemann E, 2008, P GRAPH INT C
[33]   HIERARCHICAL OBJECT MODELS FOR EFFICIENT ANTICOLLISION ALGORITHMS [J].
FAVERJON, B .
PROCEEDINGS - 1989 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOL 1-3, 1989, :333-340
[34]   Design and performance of cognitive packet networks [J].
Gelenbe, E ;
Lent, R ;
Xu, ZG .
PERFORMANCE EVALUATION, 2001, 46 (2-3) :155-176
[35]  
Gelfand IM., 1963, Calculus of variations
[36]   Creating high-quality roadmaps for motion planning in virtual environments [J].
Geraerts, Roland ;
Overmars, Mark H. .
2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, 2006, :4355-+
[37]   A FAST PROCEDURE FOR COMPUTING THE DISTANCE BETWEEN COMPLEX OBJECTS IN 3-DIMENSIONAL SPACE [J].
GILBERT, EG ;
JOHNSON, DW ;
KEERTHI, SS .
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, 1988, 4 (02) :193-203
[38]  
Hassani S., 1999, Mathematical physics, a modern introduction to its foundations
[39]   Logarithmic regret algorithms for online convex optimization [J].
Hazan, Elad ;
Kalai, Adam ;
Kale, Satyen ;
Agarwal, Amit .
LEARNING THEORY, PROCEEDINGS, 2006, 4005 :499-513
[40]  
Hsu D, 1997, IEEE INT CONF ROBOT, P2719, DOI 10.1109/ROBOT.1997.619371