CHOMP: Covariant Hamiltonian optimization for motion planning

被引:453
|
作者
Zucker, Matt [1 ]
Ratliff, Nathan [2 ]
Dragan, Anca D. [3 ]
Pivtoraiko, Mihail [4 ]
Klingensmith, Matthew [3 ]
Dellin, Christopher M. [3 ]
Bagnell, J. Andrew [3 ]
Srinivasa, Siddhartha S. [3 ]
机构
[1] Swarthmore Coll, Dept Engn, Swarthmore, PA 19081 USA
[2] Google Inc, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[4] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
来源
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH | 2013年 / 32卷 / 9-10期
关键词
Motion planning; constrained optimization; distance fields; DISTANCE; SEARCH; MANIPULATORS; ALGORITHMS;
D O I
10.1177/0278364913488805
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we present CHOMP (covariant Hamiltonian optimization for motion planning), a method for trajectory optimization invariant to reparametrization. CHOMP uses functional gradient techniques to iteratively improve the quality of an initial trajectory, optimizing a functional that trades off between a smoothness and an obstacle avoidance component. CHOMP can be used to locally optimize feasible trajectories, as well as to solve motion planning queries, converging to low-cost trajectories even when initialized with infeasible ones. It uses Hamiltonian Monte Carlo to alleviate the problem of convergence to high-cost local minima (and for probabilistic completeness), and is capable of respecting hard constraints along the trajectory. We present extensive experiments with CHOMP on manipulation and locomotion tasks, using seven-degree-of-freedom manipulators and a rough-terrain quadruped robot.
引用
收藏
页码:1164 / 1193
页数:30
相关论文
共 50 条
  • [1] CHOMP: Gradient Optimization Techniques for Efficient Motion Planning
    Ratliff, Nathan
    Zucker, Matt
    Bagnell, J. Andrew
    Srinivasa, Siddhartha
    ICRA: 2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-7, 2009, : 4030 - +
  • [2] A new local path planning approach based on improved dual covariant Hamiltonian optimization for motion planning method
    You, Bo
    Li, Zhi
    Ding, Liang
    Gao, Haibo
    Xu, Jiazhong
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (05)
  • [3] HIGHER ORDER FIRST INTEGRALS OF MOTION IN A GAUGE COVARIANT HAMILTONIAN FRAMEWORK
    Visinescu, Mihai
    MODERN PHYSICS LETTERS A, 2010, 25 (05) : 341 - 350
  • [4] COVARIANT PONDEROMOTIVE HAMILTONIAN
    ACHTERBERG, A
    JOURNAL OF PLASMA PHYSICS, 1986, 35 : 257 - 266
  • [5] Covariant hamiltonian dynamics
    van Holten, J. W.
    PHYSICAL REVIEW D, 2007, 75 (02):
  • [6] Benchmarking and optimization of robot motion planning with motion planning pipeline
    Liu, Shuai
    Liu, Pengcheng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (3-4): : 949 - 961
  • [7] Benchmarking and optimization of robot motion planning with motion planning pipeline
    Shuai Liu
    Pengcheng Liu
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 949 - 961
  • [8] COVARIANT HAMILTONIAN DYNAMICS WITH INTERACTIONS
    GARROD, C
    PHYSICAL REVIEW, 1968, 167 (05): : 1143 - &
  • [9] Generally Covariant Dirac Hamiltonian
    Epstein, K. J.
    General Relativity and Gravitation, 30 (04):
  • [10] Generally Covariant Dirac Hamiltonian
    Kenneth J. Epstein
    General Relativity and Gravitation, 1998, 30 : 617 - 627