Intertwining operators for l-conformal Galilei algebras and hierarchy of invariant equations

被引:26
作者
Aizawa, N. [1 ]
Kimura, Y. [1 ]
Segar, J. [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
[2] Ramakrishna Mission Vivekananda Coll, Dept Phys, Madras 600004, Tamil Nadu, India
关键词
SYMMETRY;
D O I
10.1088/1751-8113/46/40/405204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The l-conformal Galilei algebra, denoted by g(l) (d), is a non-semisimple Lie algebra specified by a pair of parameters (d, l). The algebra is regarded as a nonrelativistic analogue of the conformal algebra. We derive hierarchies of partial differential equations which have invariance of the group generated by g(l) (d) with a central extension as kinematical symmetry. This is done by developing a representation theory such as Verma modules, singular vectors of g(l) (d) and vector field representations for d = 1, 2.
引用
收藏
页数:14
相关论文
共 44 条
[1]  
Aizawa N., 2002, Second International Symposium on Quantum Theory and Symmetries, P222
[2]  
Aizawa N., 2008, BULG J PHYS, V35, P372
[3]   HIGHEST WEIGHT REPRESENTATIONS AND KAC DETERMINANTS FOR A CLASS OF CONFORMAL GALILEI ALGEBRAS WITH CENTRAL EXTENSION [J].
Aizawa, Naruhiko ;
Isaac, Phillip S. ;
Kimura, Yuta .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (11)
[4]   On irreducible representations of the exotic conformal Galilei algebra [J].
Aizawa, Naruhiko ;
Isaac, Phillip S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
[5]  
Alishahiha M, 2009, J HIGH ENERGY PHYS, V08
[6]   (2+1)D exotic Newton-Hooke symmetry, duality and projective phase [J].
Alvarez, Pedro D. ;
Gomis, Joaquim ;
Kamimura, Kiyoshi ;
Plyushchay, Mikhail S. .
ANNALS OF PHYSICS, 2007, 322 (07) :1556-1586
[7]   Dynamical interpretation of nonrelativistic conformal groups [J].
Andrzejewski, K. ;
Gonera, J. .
PHYSICS LETTERS B, 2013, 721 (4-5) :319-322
[8]   Nonrelativistic conformal transformations in Lagrangian formalism [J].
Andrzejewski, K. ;
Gonera, J. ;
Kijanka-Dec, A. .
PHYSICAL REVIEW D, 2013, 87 (06)
[9]   Nonrelativistic conformal groups and their dynamical realizations [J].
Andrzejewski, K. ;
Gonera, J. ;
Maslanka, P. .
PHYSICAL REVIEW D, 2012, 86 (06)
[10]  
[Anonymous], 2020, Introduction to Partial Differential Equations