Intertwining operators for l-conformal Galilei algebras and hierarchy of invariant equations

被引:26
|
作者
Aizawa, N. [1 ]
Kimura, Y. [1 ]
Segar, J. [2 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Sci, Dept Math & Informat Sci, Sakai, Osaka 5998531, Japan
[2] Ramakrishna Mission Vivekananda Coll, Dept Phys, Madras 600004, Tamil Nadu, India
关键词
SYMMETRY;
D O I
10.1088/1751-8113/46/40/405204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The l-conformal Galilei algebra, denoted by g(l) (d), is a non-semisimple Lie algebra specified by a pair of parameters (d, l). The algebra is regarded as a nonrelativistic analogue of the conformal algebra. We derive hierarchies of partial differential equations which have invariance of the group generated by g(l) (d) with a central extension as kinematical symmetry. This is done by developing a representation theory such as Verma modules, singular vectors of g(l) (d) and vector field representations for d = 1, 2.
引用
收藏
页数:14
相关论文
共 10 条
  • [1] On dynamical realizations of l-conformal Galilei groups
    Andrzejewski, K.
    Gonera, J.
    Kosinski, P.
    Maslanka, P.
    NUCLEAR PHYSICS B, 2013, 876 (01) : 309 - 321
  • [2] Towards l-conformal Galilei algebra via contraction of the conformal group
    Masterov, Ivan
    NUCLEAR PHYSICS B, 2024, 998
  • [3] N=2 supersymmetric extension of l-conformal Galilei algebra
    Masterov, Ivan
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [5] N=1, 2, 3 l-conformal Galilei superalgebras
    Galajinsky, Anton
    Masterov, Ivan
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (08):
  • [6] Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
    Aizawa, Naruhiko
    Chandrashekar, Radhakrishnan
    Segar, Jambulingan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [7] Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs
    Aizawa, Naruhiko
    Kato, Tadanori
    SYMMETRY-BASEL, 2015, 7 (04): : 1989 - 2008
  • [8] Minimal realization of`l-conformal Galilei algebra, Pais-Uhlenbeck oscillators and their deformation
    Krivonos, Sergey
    Lechtenfeld, Olaf
    Sorin, Alexander
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [9] Higher-derivative mechanics with N=2 l-conformal Galilei supersymmetry
    Masterov, Ivan
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (02)
  • [10] l-oscillators from second-order invariant PDEs of the centrally extended conformal Galilei algebras
    Aizawa, N.
    Kuznetsova, Z.
    Toppan, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (03)