A Systematic Literature Review of Non-Invasive Indoor Thermal Discomfort Detection

被引:16
作者
Marchenko, Alla [1 ]
Temeljotov-Salaj, Alenka [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Civil & Environm Engn, N-7491 Trondheim, Norway
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 12期
关键词
thermal comfort; non-invasive discomfort detection; machine learning; indoor environment; bio-sensing; PREDICTED MEAN VOTE; NEURAL-NETWORK; COMFORT ASSESSMENT; ENERGY; PRODUCTIVITY; SENSATION; MODEL; ENVIRONMENT; DESIGN; IMPACT;
D O I
10.3390/app10124085
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since 1997, scientists have been trying to utilize new non-invasive approaches for thermal discomfort detection, which promise to be more effective for comparing frameworks that need direct responses from users. Due to rapid technological development in the bio-metrical field, a systematic literature review to investigate the possibility of thermal discomfort detection at the work place by non-invasive means using bio-sensing technology was performed. Firstly, the problem intervention comparison outcome context (PICOC) framework was introduced in the study to identify the main points for meta-analysis and, in turn, to provide relevant keywords for the literature search. In total, 2776 studies were found and processed using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology. After filtering by defined criterion, 35 articles were obtained for detailed investigation with respect to facility types used in the experiment, amount of people for data collection and algorithms used for prediction of the thermal discomfort event. The given study concludes that there is potential for the creation of non-invasive thermal discomfort detection models via utilization of bio-sensing technologies, which will provide a better user interaction with the built environment, potentially decrease energy use and enable better productivity. There is definitely room for improvement within the field of non-invasive thermal discomfort detection, especially with respect to data collection, algorithm implementation and sample size, in order to have opportunities for the deployment of developed solutions in real life. Based on the literature review, the potential of novel technology is seen to utilize a more intelligent approach for performing non-invasive thermal discomfort prediction. The architecture of deep neural networks should be studied more due to the specifics of its hidden layers and its ability of hierarchical data extraction. This machine learning algorithm can provide a better model for thermal discomfort detection based on a data set with different types of bio-metrical variables.
引用
收藏
页数:16
相关论文
共 66 条
[1]   Thermal comfort and productivity - Evaluation of workplace environment in a task conditioned office [J].
Akimoto, Takashi ;
Tanabe, Shin-ichi ;
Yanai, Takashi ;
Sasaki, Masato .
BUILDING AND ENVIRONMENT, 2010, 45 (01) :45-50
[2]   Thermal comfort: Design and assessment for energy saving [J].
Alfano, Francesca Romana d'Ambrosio ;
Olesen, Bjarne W. ;
Palella, Boris Igor ;
Riccio, Giuseppe .
ENERGY AND BUILDINGS, 2014, 81 :326-336
[3]   Energy and comfort assessment in educational building: Case study in a French university campus [J].
Allab, Yacine ;
Pellegrino, Margot ;
Guo, Xiaofeng ;
Nefzaoui, Elyes ;
Kindinis, Andrea .
ENERGY AND BUILDINGS, 2017, 143 :202-219
[4]  
Alpaydin E., 2020, INTRO MACHINE LEARNI
[5]  
American Society of Heating Refrigerating and Air-Conditioning Engineers, 2010, 552010 AM SOC HEAT R
[6]  
[Anonymous], 2016, Deep Learning
[7]  
[Anonymous], 1997, Machine Learning
[8]  
Attia S., 2014, P 1 INT C EN IND ENV
[9]  
Baricic A., 2014, Zdravniski Vestnik, V83, P217
[10]  
Barraza L, 2017, ENVISIONING FUTURES FOR ENVIRONMENTAL AND SUSTAINABILITY EDUCATION, P257, DOI [10.1109/PERCOM.2017.7917872, 10.3920/978-90-8686-846-9_18]