Preconditioning discrete approximations of the Reissner-Mindlin plate model

被引:32
作者
Arnold, DN
Falk, RS
Winther, R
机构
[1] RUTGERS STATE UNIV, DEPT MATH, NEW BRUNSWICK, NJ 08903 USA
[2] UNIV OSLO, DEPT INFORMAT, N-0316 OSLO, NORWAY
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1997年 / 31卷 / 04期
关键词
preconditioner; Reissner; Mindlin; plate; finite element;
D O I
10.1051/m2an/1997310405171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider iterative methods for the solution of the linear system of equations arising from the mixed finite element discretization of the Reissner-Mindlin plate model. We show how to construct a symmetric positive definite block diagonal preconditioner such that the resulting linear system has spectral condition number independent of both the mesh size h and the plate thickness t. We further discuss how this preconditioner may be implemented and then apply if to efficiently solve this indefinite linear system. Although the mixed formulation of the Reissner-Mindlin problem has a saddle-point structure common To other mired variational problems, the presence of the small parameter t and the fact that the matrix in the upper left corner of the partition is only positive semidefinite introduces new complications.
引用
收藏
页码:517 / 557
页数:41
相关论文
共 25 条
[1]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]   A MULTIGRID METHOD FOR A PARAMETER DEPENDENT PROBLEM IN SOLID MECHANICS [J].
BRAESS, D ;
BLOMER, C .
NUMERISCHE MATHEMATIK, 1990, 57 (08) :747-761
[4]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[5]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[6]  
BRAMBLE JH, IN PRESS SIAM J NUME
[7]  
BRAMBLE JH, COMPUT MATH APPL
[8]   Multigrid methods for parameter dependent problems [J].
Brenner, SC .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (03) :265-297
[9]  
Brezzi F., 1991, Mathematical Models & Methods in Applied Sciences, V1, P125, DOI 10.1142/S0218202591000083
[10]   BALANCING DOMAIN DECOMPOSITION FOR MIXED FINITE-ELEMENTS [J].
COWSAR, LC ;
MANDEL, J ;
WHEELER, MF .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :989-1015