Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries

被引:89
作者
Spinner, Neil S. [1 ,2 ]
Love, Corey T. [1 ]
Rose-Pehrsson, Susan L. [1 ]
Tuttle, Steven G. [1 ]
机构
[1] US Naval Res Lab, Div Chem, Washington, DC 20375 USA
[2] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA
关键词
Electrochemical Impedance Spectroscopy; Lithium-Ion; Temperature Diagnostic; LI-ION; ELECTROCHEMICAL IMPEDANCE; LITHIATED GRAPHITE; THERMAL-BEHAVIOR; SHORT-CIRCUIT; CELLS; SPECTROSCOPY; OVERCHARGE; MECHANISMS; ELECTRODES;
D O I
10.1016/j.electacta.2015.06.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Instantaneous internal temperature monitoring of a commercial 18650 LiCoO2 lithium-ion battery was performed using a single-point EIS measurement. A correlation between the imaginary impedance, -Z(imag), and internal temperature at 300 Hz was developed that was independent of the battery's state of charge. An Arrhenius-type dependence was applied, and the activation energy for SEI ionic conductivity was found to be 0.13 eV. Two separate temperature-time experiments were conducted with different sequences of temperature, and single-point impedance tests at 300 Hz were performed to validate the correlation. Limitations were observed with the upper temperature range (68 degrees C < T< 95 degrees C), and consequently a secondary, empirical fit was applied for this upper range to improve accuracy. Average differences between actual and fit temperatures decreased around 3-7 degrees C for the upper range with the secondary correlation. The impedance response at this frequency corresponded to the anode/SEI layer, and the SEI is reported to be thermally stable up to around 100 degrees C, at which point decomposition may occur leading to battery deactivation and/or total failure. It is therefore of great importance to be able to track internal battery temperatures up to this critical point of 100 degrees C, and this work demonstrates an expansion of the single-point EIS diagnostic to these elevated temperatures. Published by Elsevier Ltd.
引用
收藏
页码:488 / 493
页数:6
相关论文
共 48 条
[1]   Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes [J].
Abraham, DP ;
Reynolds, EM ;
Sammann, E ;
Jansen, AN ;
Dees, DW .
ELECTROCHIMICA ACTA, 2005, 51 (03) :502-510
[2]   Safety mechanisms in lithium-ion batteries [J].
Balakrishnan, PG ;
Ramesh, R ;
Kumar, TP .
JOURNAL OF POWER SOURCES, 2006, 155 (02) :401-414
[3]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[4]   Thermal impedance spectroscopy for Li-ion batteries using heat-pulse response analysis [J].
Barsoukov, E ;
Jang, JH ;
Lee, H .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :313-320
[5]   Investigation of the kinetic mechanism in overcharge process for Li-ion battery [J].
Belov, Dmitry ;
Yang, Mo-Hua .
SOLID STATE IONICS, 2008, 179 (27-32) :1816-1821
[6]   Main aging mechanisms in Li ion batteries [J].
Broussely, M ;
Biensan, P ;
Bonhomme, F ;
Blanchard, P ;
Herreyre, S ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :90-96
[7]   Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells [J].
Cai, Wei ;
Wang, Hsin ;
Maleki, Hossein ;
Howard, Jason ;
Lara-Curzio, Edgar .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7779-7783
[8]   Thermal analysis of spirally wound lithium batteries [J].
Chen, SC ;
Wang, YY ;
Wan, CC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (04) :A637-A648
[9]   Multi-scale study of thermal stability of lithiated graphite [J].
Chen, Zonghai ;
Qin, Yan ;
Ren, Yang ;
Lu, Wenquan ;
Orendorff, Christopher ;
Roth, E. Peter ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4023-4030
[10]   Lithium Difluoro(oxalato)borate as Additive to Improve the Thermal Stability of Lithiated Graphite [J].
Chen, Zonghai ;
Qin, Yan ;
Liu, Jun ;
Amine, K. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (04) :A69-A72