On the non-uniqueness of weak solutions of the nonlinear heat equation with nonlinearity u3

被引:8
作者
Terraneo, E [1 ]
机构
[1] Univ Evry, Dept Math, F-91025 Evry, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 09期
关键词
D O I
10.1016/S0764-4442(99)80267-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove for some singular initial data the existence of a solution u(t) = u(0) + v(t) is an element of C([0, T]; L-3(R-3)) of the nonlinear heat equation with nonlinearity u(3), which is not equal to Weissler's solution. The proof lies on the study of the perturbed equation on v(t) in weak-L-G. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:759 / 762
页数:4
相关论文
共 11 条
[2]  
BERGH J, 1996, INTERPOLATION SPACES
[3]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[4]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[5]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[6]  
Hunt R., 1966, Enseign. Math., V12, P249
[7]  
MEYER Y, 1998, CURRENT DEV MATH 199
[8]   SINGULAR BEHAVIOR IN NONLINEAR PARABOLIC EQUATIONS [J].
NI, WM ;
SACKS, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (02) :657-671
[9]   EXISTENCE AND CONVERGENCE OF POSITIVE WEAK SOLUTIONS OF DELTA-U = U(N/N-2) IN BOUNDED DOMAINS OF R(N), N-GREATER-THAN-OR-EQUAL-TO-3 [J].
PACARD, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (03) :243-265
[10]  
TERRANEO E, THESIS