Access to Ultralarge-Pore Ordered Mesoporous Materials through Selection of Surfactant/Swelling-Agent Micellar Templates

被引:121
作者
Kruk, Michal [1 ,2 ]
机构
[1] CUNY Coll Staten Isl, Dept Chem, Ctr Engineered Polymer Mat, Staten Isl, NY 10314 USA
[2] CUNY, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-SIEVES; HOLLOW NANOSPHERES; DIBLOCK COPOLYMER; AQUEOUS-SOLUTIONS; FDU-12; SILICA; SBA-15; ORGANOSILICAS; SIZE; TEMPERATURE; SOLUBILIZATION;
D O I
10.1021/ar200343s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The surfactant-micelle-templating method has revolutionized the synthesis of high-surface-area materials with mesopores (diameter 2-50 nm) that have well-defined shapes and sizes. One of the major benefits of this method is the ability to tailor the pore size by manipulating the size of the templating micelles. The uniform pores typically form ordered arrays. Although the choice of surfactant can tune the size of the micelles, It is more convenient to use a single surfactant and tailor the micelle size by adding a swelling agent Unfortunately, the swelling agent tends to induce disorder or heterogeneity in the resulting structures, which can make this approach difficult to Implement. We hypothesized that the swelling agents that are moderately solubilized within the micelles of a particular surfactant could generate well-defined micelle-templated structures with significantly enlarged pores. Using this idea, we could judiciously select candidate swelling agents from families of compounds whose extent of solubilization in the surfactant micelles systematically changes with variations in the compound structure. Alkyl-substituted benzenes proved very useful as swelling agents, because their extent of solubilization in micelles of common Pluronic surfactants (EOmPOnEOm; EO = ethylene oxide, PO = propylene oxide) significantly increases as the number or size of alkyl substituents decreases. On the basis of these principles, we identified 1,3,5-triisopropylbenzene and cyclohexane as swelling agents for the synthesis of ultralarge-pore SBA-15 silica (pore diameter up to 26 nm) and organosilicas with 2-D hexagonal structures of cylindrical mesopores. Moreover, we used xylene, ethylbenzene, and toluene as swelling agents for the synthesis of large-pore (pore diameter up to 37 nm) face-centered cubic silicas and organosilicas with spherical mesopores. During the early stages of the synthesis, the entrances to large cylindrical and spherical mesopores of these materials were much smaller than the inner pore diameter. Therefore we can often use calcination at sufficiently high temperatures (400-950 degrees C) to produce dosed-pore silicas. Using hydrothermal treatments, we can obtain materials with large pore entrance sizes. In Pluronic-templated synthesis, we observed the propensity for formation of single-micelle-templated nanoparticles as the ratio of the framework precursor to surfactant decreased, and this process afforded organosilica nanotubes and uniform hollow spheres with inner diameters up to similar to 21 nm. Consequently, the adjustment of variables in the micelle-templated synthesis allows researchers to tailor the pore size and connectivity and to form either periodic pore arrays or individual nanoparticles.
引用
收藏
页码:1678 / 1687
页数:10
相关论文
共 67 条
[1]   POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) BLOCK-COPOLYMER SURFACTANTS IN AQUEOUS-SOLUTIONS AND AT INTERFACES - THERMODYNAMICS, STRUCTURE, DYNAMICS, AND MODELING [J].
ALEXANDRIDIS, P ;
HATTON, TA .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1995, 96 (1-2) :1-46
[2]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[3]   TEMPLATING OF MESOPOROUS MOLECULAR-SIEVES BY NONIONIC POLYETHYLENE OXIDE SURFACTANTS [J].
BAGSHAW, SA ;
PROUZET, E ;
PINNAVAIA, TJ .
SCIENCE, 1995, 269 (5228) :1242-1244
[4]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[5]   Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropylbenzene As Micelle Expander [J].
Cao, Liang ;
Man, Tiffany ;
Kruk, Michal .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1144-1153
[6]  
Chan YT, 2003, STUD SURF SCI CATAL, V146, P113
[7]   Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene [J].
Deng, Yonghui ;
Yu, Ting ;
Wan, Ying ;
Shi, Yifeng ;
Meng, Yan ;
Gu, Dong ;
Zhang, Lijuan ;
Huang, Yan ;
Liu, Chong ;
Wu, Xiaojing ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (06) :1690-1697
[8]   Silica Nanotubes and Their Assembly Assisted by Boric Acid to Hierachical Mesostructures [J].
Ding, Shilei ;
Liu, Na ;
Li, Xinwei ;
Peng, Luming ;
Guo, Xuefeng ;
Ding, Weiping .
LANGMUIR, 2010, 26 (07) :4572-4575
[9]   Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores [J].
Fan, J ;
Yu, CZ ;
Lei, J ;
Zhang, Q ;
Li, TC ;
Tu, B ;
Zhou, WZ ;
Zhao, DY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) :10794-10795
[10]   Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J].
Fan, J ;
Yu, CZ ;
Gao, T ;
Lei, J ;
Tian, BZ ;
Wang, LM ;
Luo, Q ;
Tu, B ;
Zhou, WZ ;
Zhao, DY .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (27) :3146-3150